
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Software Tool to Convert Requirements to Test
Cases

1st Abhimanyu Gupta
Operations & ITM

Department
Chaifetz School of Business,
Saint Louis University, Saint

Louis, USA
abhimanyu.gupta@slu.edu

2nd Palash Bera
Operations & ITM

Department
Chaifetz School of Business,
Saint Louis University, Saint

Louis, USA
palash.bera@slu.edu

Abstract—As software test design is a manual process, test
cases are generally prepared manually. We use a structured
method to extract business requirements and feed these
requirements in a tool (TestAlgo). The tool translates these
requirements and automatically creates test cases and business
requirements models such as process models. We suggest that this
tool can not only save time and effort in creating automated test
cases but also handle changes in requirements efficiently.

Keywords—requirements, test cases, requirements traceability
matrix

I. INTRODUCTION

Developing test cases is considered to be a complex art and
the process is subjective and is based on testers’ domain
knowledge [1]. Structured business requirements and test cases
are the two sides of the same coin. If requirements are captured
systematically in a structured method, then it is possible to
convert these requirements to test cases. In this paper, we discuss
about our tool – TestAlgo (www.testingalgorithms.com) that
uses a structured methodology to capture requirements and then
converts them to business requirements (e.g. process models,
UML Use Case, User Stories) and testing outputs (e.g. manual
test cases, Requirements Traceability Matrix). A key advantage
of this tool is if requirements changes, then the structured
requirements in the tool is updated and the outputs such as test
cases are regenerated.

II. METHODOLOGY USED IN THE TOOL

A. Action Triad Method

To develop automated test cases, we propose a model-based
method that can convert business requirements to conceptual
models. Conceptual models are used for documenting the
features of the domain that needs to be reflected in the
Information Systems [2]. We use a modified version of Entity
Relationship (ER) modeling as a conceptual modeling
technique. ER models [3] describe the domain concepts using
entities and relationships and the technique is a popular
conceptual modeling technique in practice [4]. The traditional
ER models can be used for modeling domain concepts of an
organization but ER models cannot be used directly for
modeling software applications. Therefore, we adopted certain
changes to the ER modeling technique and termed it Action
Triad Method.

Action is the focus of this method and is modeled as a
relationship between two concepts. As actions are performed
by specific agents on other agents or objects thus this model is
described as a set of action triads consisting of Agent-Action-
Concept. Accordingly, we define an action triad as <x, y, z>
where x is an agent, y is an action performed by the agent, and
z is the concept (agent or object) on which the action is
performed on. The concepts of action triad are described in
Table 1.

TABLE I. CORE CONCEPTS OF ACTION TRIAD

Concepts in
Action Triad

Definition

Agent An agent is an entity that can interact with
objects or other agents [5].

Function A function represents activities that are
performed by agents.

Object An object represents non-agents in the domain
with which the agents act. Objects can be

tangible (e.g. Phone) or intangible (e.g. Web
site).

Dimension Dimensions describe the objects or agents in
measurable form.

Instance Dimensions have instances that are generally
expressed in text or numbers.

A key feature of this method is to instantiate each dimension
with additional concepts that are relevant to software testing-
instances, scenario, expected results, and requirement ID. A
dimension can have multiple values as instances. Each instance
can have a positive or a negative scenario. Positive scenario
means that the action with the specific instance can be
performed successfully. If the user cannot perform the action
successfully with a specific instance, then the scenario is
negative. For example, if password is null then the null instance
is considered as a negative scenario as the action login
(dimension of which is password) cannot be completed
successfully. Expected results indicate the outcome when an
action is taken using a specific instance (e.g. null password
should result in incomplete login). Requirement IDs correspond
to the details of the instances mentioned in the functional
requirements document.

III. TESTALGO TOOL

A. Approach

The philosophy that we adopt for developing Action Triad
Method is software testing can be considered as a game where
a tester “pokes” an application under test using various input
actions and data combinations and then the tester compares the
observed behavior of the application with its expected behavior.
Thus, the application should be modeled in such a way that it
can be poked based on different combination of values in test
cases. These test cases can be created using the dimension and
instance concepts of the method. However, if all possible
combinations of values are considered then large number of test
cases will be created. Therefore, an optimization engine should
be used to come up with minimum number of test cases that can
cover maximum combination of values. This approach is
shown in Figure 1.

Fig. 1. Approach to generate automated test cases

B. A Case Study

To demonstrate the application of our tool to generate test
cases automatically, we use a sample case study. In this case
study, a user logs in and logs out of an application. The
description of the requirements is provided in Table 2. The
objective of this case study is to create automated test cases to
test the functionalities as described in Table 2.

TABLE II. FUNCTIONAL REQUIREMENTS OF THE CASE

The screen shots of the interface of the application are shown
in Figure 2.

Fig. 2. Login and Logout functions of an application

To apply the action triad method, the application description is
decomposed into two action triads: <User, Login,
Application> and <User, Logout, Application>. The
dimensions of the functions and the agents are identified using
the action triad method.

C. TestAlgo tool

A tool for the Action Triad method has been developed that
facilitates the input of the triad concepts. The triads and its
details can be entered in the tool. A screen shot of the tool is
shown in Figure 3. The tool checks for the implementation of
the method. For example, if the user forgets to create an
instance of a dimension then it will prompt an error.

Fig. 3. TestAlgo tool to input the concepts of Action Triad

Fig. 4. Screen to enter dimension values in TestAlgo

Once the triad information is obtained, the tool uses a statistical
pairwise optimization engine to create test cases with specific
steps. The engine optimizes the dimensions and their instances
to create test cases. The dimensions become test case step
descriptions and the instances become the values of these
descriptions. As all the instances will not fit into one test case

Description Requirement
ID

The user needs to provide a valid username
and password to successfully login to the
application.

1.1

After the user logs into the application, then
she is taken to the browse application page
where the user can click on different reports.

1.2

On clicking the logout button the user gets an
alert to logout. If the user clicks on yes then
she is logged out otherwise on clicking
cancel the user is taken back to the browse
application page.

1.3

A user has a valid username (John) and a
valid password (1234!).

1.4

therefore the optimization engine will create multiple test cases
ensuring that a pair of instances is covered in at least one test
case. To make the test case step description readable, specific
user actions (e.g. enter or click) are used in the step
descriptions. In the tool, each dimension can be classified as:
text, dropdown, and button (Fig. 4). These keywords are linked
to action words that users perform to test the application. For
example, if text is selected as a dimension type then the
keyword “Enter” will be used in the test case step description.
Thus, a test case step description could be “Enter John as
LoginUsername” where John is an instance of the dimension
LoginUsername whose type is text. Similarly, when dimension
type is button then the keyword “click” is used in the step
description.

IV. BUSINESS REQUIREMENTS OUTPUTS OF THE TOOL

Two popular business models such as BPMN and UML use
cases are automatically generated from the tool. Use case
describes the functionalities performed by the agents and BPMN
shows the sequence or flow of the functionalities performed by
the agent. A key advantage of all these business models is they
are created automatically.

Fig. 5. Business models generated by TestAlgo

Fig. 6. User story generated by TestAlgo

In Agile methodology, an important task is to develop the
“user stories” that describe software features from end-user
perspectives. Two main advantages of the user stories developed
by our algorithms are: (1) standardized format of the stories and
(2) elimination of human resources for creation of these stories.
The acceptance criteria can also be represented in test cases
which are also generated in optimized numbers.

Another important model generated by the tool is the flow
chart model. This model shows the graphical flow of the
application. This model can be very useful to visually validate
the logics of the application and design/modify the application
interface.

Fig. 7. Flow chart model developed by TestAlgo

V. TESTING OUTPUTS OF THE TOOL

For the case study described here, the tool generated 7 test
cases (2 positive and 5 negative) for the two triads. Table 4
shows two test cases that are generated from the tool. Each test
case has a description, step number, step description, expected
results, and traceability. The step description has specific actions
with specific values (e.g. Enter “John” as LoginUserName).
However, each test case is different as different combinations of
instances are used. If one of the instances has a negative scenario
then the test case is considered negative meaning the actions
mentioned in the test case should not be successfully executed.
If no instances have negative scenarios then the test case is
considered as positive meaning the actions mentioned in the test
case should be successfully executed.

Each test case starts with the instances of the dimensions (e.g.
UserPassword and UserUsername) of the entities (e.g. user).
This step is considered as a pre-requisite i.e. the condition that
is required before the test case can be run. A pre-requisite step
does not have expected results and traceability.

Each test case can have only one negative instance scenario.
This is because from a tester’s perspective, if a test case has two

Feature: User Login Application

 As a User
 I want to Login Application

Scenario Outline: User attempts to Login Application with various input parameters

Given UserPassword is '<UserPassword>'
 And UserUsername is '<UserUsername>'

 When User Login Application
 And LoginUsername is '<LoginUsername>'
 And LoginPassword is '<LoginPassword>'
 And LoginTrigger is '<LoginTrigger>'

 Then status of Login should be '<Status>'

 Examples:

UserPassword	UserUsername	LoginUsername	LoginPassword	LoginTrigger	Status
1234!	John	John	1234!	Login	Successful
1234!	John	John	Password	Login	Unsuccessful
1234!	John	Blank	1234!	Login	Unsuccessful
1234!	John	JohnInvalid	1234!	Login	Unsuccessful
1234!	John	John	Blank	Login	Unsuccessful

or more negative instances (e.g. username is null and password
is null) then it is not possible to identify the exact cause of
failure of the test (e.g. whether the test failed because password
was incorrect or it failed because the username was incorrect).

TABLE III. PARTIAL LIST OF TEST CASES BY TESTALGO

Table 3 shows the sample test cases that are automatically
generated from the TestAlgo tool. Test case 1 is a positive
scenario as the test is expected to pass with the actions
mentioned. Test case 2 is a negative scenario test as it is
expected to fail when executed. This is because in step 3 of the
test case 2, the password is not a valid password. Traceability
to the requirements are also shown in these test cases (not shown
here due to lack of space). These test cases are developed in
ALM format and can be easily uploaded in a test management
tool.

A key output that is generated from the tool is the
requirements traceability matrix (RTM). This matrix traces each
test case with the business requirements. All possible
combination of pairs of instances are identified and mapped with
the test cases. This table is a proof that at least one pair is covered
in each test case. A partial RTM is shown in Table 4. For
example, UserPassword 1234! And LoginPassword 1234!
combination can be found in test case 1 but not in test case 2.

TABLE IV. RTM DEVELOPED BY TESTALGO

In addition to the RTM, a similarity index of the test cases is
provided as an output of the tool. This mapping (Table 5) shows
how each test case is related to the other. For example, test case
2 is 60% similar to test case 3. This index is useful to identify
the group of test cases that are similar (or dissimilar) to each

other. If a bug is identified and related to a test case, this
similarity index can tell whether other related test cases should
also be tested.

TABLE V. SIMILARITY INDEX OF TEST CASES

VI. CONCLUSION

Test case development has been considered as a manual
process because of the subjective nature of interpretation of
business requirements. But when application requirements
change very frequently, testers are forced to redevelop the test
cases constantly increasing the testing time and execution. To
address this problem, we developed a conceptual model based
method (termed action triad) and implemented this methodology
using a tool – TestAlgo. We feed the structured requirements in
the tool and it generates multiple business requirements and
testing outputs. The test cases that are generated are useful as
they are automatically generated based on structured
requirements that are fed in the tool. In addition to the saving of
time to manually create the test cases, a major advantage of the
method is it handles the change of requirements efficiently.
When the changes in the requirements are updated in the tool,
then a new set of test cases is regenerated.

Our action triad method and the implementation of it through
our tool create opportunities for Business Analysts (BA) to serve
as the role of testers. In agile based environment, our
deliverables are generated at lightning speed and thus can be
used for requirements documentation. The changes in the
business requirements can be made in the tool and a new set of
requirements and testing deliverables can be created
automatically by the software tool. Finally, if BAs prepare
requirements documents using our deliverables then test design
is automatically taken care of without spending any additional
effort and time.

REFERENCES

 1. Kaner, C. Architectures of Test Automation. in STAR
West. 2000. San Jose, Canlifornia.

2. Dobing, B. and J. Parsons, Dimensions of UML
Diagram Use: A Survey of Practitioners. Journal of
Database Management, 2008. 19: p. 1-18.

3. Teory, T.J., D. Yang, and J.P. Fry, A Logical Design
Methodology for Relational Databases Using the
Extended Entity-Relationship Model. ACM
Computing Surveys, 1986. 18(2): p. 197-222.

4. Dobing, B. and J. Parsons, How UML is used.
Commun. ACM, 2006. 49(5): p. 109-113.

5. Wooldridge, M., Reasoning about Rational Agents.
2000, Massachusetts: The MIT Press.

Pairwise Combination Test Case 1 Test Case 2
UserPassword = 1234!,
LoginPassword = 1234! 1
UserPassword = 1234!,
LoginTrigger = Login 1 1
UserUsername = John,
LoginUsername = John 1 1
UserUsername = John,
LoginPassword = 1234! 1

Test Cases 1 2 3 4 5
1 1 0.8 0.8 0.8 0.8
2 0.8 1 0.6 0.6 0.8
3 0.8 0.6 1 0.8 0.6
4 0.8 0.6 0.8 1 0.6
5 0.8 0.8 0.6 0.6 1

