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Abstract—Engineering avionics software is a complex task.
Even more so due to their safety-critical nature. Aviation author-
ities require avionics software suppliers to provide appropriate
evidence of achieving DO-178C objectives for the verification
of outputs of the requirements and design processes, and
requirements-based testing. This concern is leading suppliers to
consider and incorporate more effective engineering methods
that can support them in their verification and certification
endeavours. This paper presents SpecML, a modelling language
providing a requirements specification infrastructure for avionics
software. The goal of SpecML is threefold: 1) enforce certification
information mandated by DO-178C, 2) capture requirements in
natural language to encourage adoption in industry. and 3) cap-
ture requirements in a structured, semantically-rich formalism to
enable requirements-based analyses and testing. The modelling
language has been developed as a UML profile extending SysML
Requirements. A reference implementation has been developed
and an empirical validation was performed in the context of an
industrial avionics case study.

Keywords—Requirements modelling language, requirements-
based testing, avionics software, DO-178C, certification.

I. INTRODUCTION

Safety is a major concern for the aviation industry. Avionics
systems must be developed appropriately to avoid, or at least
mitigate, posing undue harm to anyone or anything in the
aircraft’s operational environment. The advent of software as
the controller of behaviour for avionics systems has made
software a prime contributor to these systems’ potential failure
conditions [1, 2]. Software may erroneously control their
behaviour or mislead the systems’ users (i.e. the pilots or
other avionics systems) into carrying out inappropriate actions
[3]. Thus, aviation authorities impose stringent regulation, like
DO-178C [4] and its European equivalent ED-12C, on the
development of software for airborne systems. The aim of the
DO-178C guideline is to produce software that is validated
and verified for its airworthiness, i.e. reliable and safe-to-use
in flight.

For DO-178C, just as with any software development
project, requirements engineering is a critical phase. The
majority of errors found in safety-critical software usually
have their origin in this phase. Nevertheless, over 50% of
them are only detected and corrected in the final phases of
development [5]. DO-178C prescribes objectives that need
to be satisfied in this regard: 1) requirements are developed
in a hierarchical way with explicit bi-directional traces be-
tween them, 2) requirements exist for both normal-range and

robustness (abnormal-range) conditions, and 3) specific test
cases are developed from the requirements to test software
responses to normal-range and robustness inputs and condi-
tions. Current industry practices have requirements specified
using constrained natural language and managed with the help
of textual requirements databases, like IBM DOORS [6, 7].
Although the use of a constrained natural language brings
some discipline and rigour to requirement specifications, this
practice is still focused on writing requirements in human-
readable prose. This inevitably raises problems for satisfying
the DO-178C objectives. Natural language indeed facilitates
communication between stakeholders but it is not a suitable
form of specification for supporting interrelationships, de-
composition, requirements-based analyses and testing [8]. In
such context, it becomes essential to provide a requirements
specification language.

Several requirements specification languages exist (e.g., [7,
9–16]). Some of them only support the specification of natural
language-based requirements (e.g., [9, 11, 12]). Others allow
the expression of semantically richer requirement statements
than natural language statements (e.g., [13–16]). However, all
of the latter force requirements to be captured in an already
structured form, which restrains their adoption even when they
can enable requirements-based analyses and testing. Moreover,
none of these languages provides sufficient support for the
interrelationships and decomposition as defined by DO-178C.

This paper proposes SpecML. SpecML is a modelling
language that provides a requirements specification infras-
tructure for avionics software in the context of DO-178C.
SpecML is designed as a UML profile augmenting SysML
Requirements by integrating constructs from several existing
approaches. The goal of SpecML is threefold. First, enforce
certification information mandated by DO-178C like the in-
terrelationships and decomposition of requirements. Second,
capture requirements in natural language to smooth the way
for its adoption in industry. Third, provide facilities to capture
requirements in a structured, semantically-rich formalism to
enable requirements-based analyses and testing. The language
is open and may be tailored to other industries and regulatory
guidelines and standards. SpecML is validated by the devel-
opment of a reference implementation and the evaluation of
its effectiveness with an avionics industrial case study.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the necessary background
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knowledge and examines related work. Section III describes
SpecML. Section IV presents SpecML’s reference implemen-
tation and validates the language through experimentation with
an avionics software case study. Finally, Section V draws
conclusions and outlines future work.

II. BACKGROUND AND RELATED WORK

The work has been developed in an industrial setting of
avionics companies, which are required to deliver safety-
critical software compliant with DO-178C. Subsection II-A
describes the DO-178C guideline, giving special attention to
some of the objectives for the requirements specification,
design and verification processes. Subsection II-B discusses
related work. This information will serve as the necessary
background knowledge for a reader to understand the moti-
vations behind SpecML.

A. DO-178C

The DO-178C guideline [4] is the de facto standard for
developing airworthy software for airborne systems [17]. Its
regulatory scope encompasses the complete software develop-
ment life cycle, from requirements specification to verification
of the resulting software. DO-178C prescribes, among others,
the following processes: requirements, design, and verification
and validation (V&V). For each of these processes DO-178C
defines airworthiness assurance needs in the form of process
objectives. The requirements process develops (i.e. refines
and decomposes) system requirements allocated to software
(SRATS) into high-level software requirements (HLRs) suit-
able for directing the software design activities. The design
process covers the development of low-level software require-
ments (LLRs) from the HLRs, and the development of the
software architecture. SRATS, HLRs and LLRs must be traced
between them to their originating requirement. In such cases
when a requirement cannot be directly traced to an originating
requirement it must be identified as a derived requirement.
Requirements must exist for both normal-range and robustness
(abnormal-range) conditions.

V&V is a transverse process responsible for detecting
and reporting errors that may have been introduced during
any process. For this, V&V must perform a combination
of reviews, analyses and testing over the processes’ outputs.
Reviews and analyses of the outputs of the requirements and
design processes must ensure that HLRs are traceable to
SRATS, LLRs are traceable to HLRs, and HLRs and LLRs
exist for both normal-range and robustness (abnormal-range)
conditions. Testing involves the creation of specific test cases
from the HLRs to test software responses to normal-range and
robustness inputs and conditions.

B. Related work

Several requirements modelling languages exist that are
based on UML. SysML [9] adds specific constructs to
UML for capturing requirements and their interrelationships.
Nonetheless, requirements are expressed with simple natural

language statements and the semantics of relationships are am-
biguous and open to interpretation. MARTE [10] is intended
for describing real-time and embedded systems. However,
MARTE is focused on non-functional aspects of requirements.
Thus, lacks the necessary constructs to create a complete
requirements specification on its own.

SafeML [11] extends UML for capturing safety-related
requirements allocated to software and enabling the monitor-
ing of the design and implementation of the software with
regard to the provided safety requirements. The approach in
[12] targets the specification of test models that can serve
both for software testing and as supporting evidence in DO-
178 certification processes. The approach consists of a UML
profile extending UML activity diagrams with safety-related
information and traces to requirements. These two languages,
however, capture requirements in natural language, meaning
the safety-related information must be manually extracted to
support their verification.

A number of approaches exist allowing the expression of
semantically richer requirements than natural language state-
ments (e.g., [7, 13–16]). RSML (Requirements State Machine
Language) [13] captures requirements with a state-like for-
malism as functions describing the mapping between inputs
and outputs of the system in face of disturbances. RSML
features hierarchical abstraction to hide low-level informa-
tion and make the specification more readable. Two levels
of hierarchical abstraction are suggested to meet DO-178C
requirements hierarchy. RSML has been used in the avionics
domain [13]. Despite that, a complete formalization of the
language was not created and the language is not openly
available [18]. Furthermore, the use of hierarchical abstraction
obscures the separation between HLRs and LLRs. The lan-
guage even allows users to include design-level information
in the requirements specification, a practice that is greatly
discouraged by DO-178C.

RDAL (Requirements Definition and Analysis Language)
[7] is a standardized modelling language for capturing, val-
idating, analyzing and verifying system requirements. Re-
quirements can be expressed using both natural language
statements and Use Case Maps (UCM), a sublanguage of the
User Requirements Notation (URN). A major drawback is
that neither RDAL nor UCM were designed with DO-178C
objectives in mind. Moreover, UCM, like RSML, is prone to
convey design information.

The approach in [15] proposes the use of Horizontal
Condition Tables (HCTs) for requirements specification of
safety-critical software. An HCT defines a requirement as a
single function describing a single behaviour that computes a
single output. The studies in [14, 19] propose the property-
based requirements (PBR) theory as a method for solving
the problems of ambiguity, inconsistency and incompleteness
in natural language-based requirements specifications. A PBR
is defined as a constraint for the system enforcing a prop-
erty whenever a condition is met. SpeAR (Specification and
Analysis of Requirements) [16] is an open-source tool and
formal language for capturing and analyzing requirements. The
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language is designed to read like natural language although it
has the formal semantics of Past Linear Temporal Logic. Thus,
it supports proofs of critical properties about requirements,
like logical entailment and logical consistency, using model
checking. SpeAR can also capture natural language-based
requirement statements but only for those requirements that
cannot or are not intended to be formalized. Although SpeAR
has been developed with DO-178C compliance in mind, it
has a vocabulary that is not specific to DO-178C and does
not enforce certain mandatory information (e.g., rationale).
HCTs, PBRs and SpeAR force requirements to be captured
in an already structured form, which restrains their adoption
in industry. Moreover, they lack constructs for expressing
timing constraints and clocks, interrelationships between re-
quirements, and the identification of derived requirements.

III. SPECML: REQUIREMENT SPECIFICATION MODELLING
LANGUAGE FOR AVIONICS SOFTWARE

SpecML is proposed as a language that: 1) enforces cer-
tification information mandated by DO-178C like the inter-
relationships and decomposition of requirements, 2) captures
requirements in natural language to smooth the way for its
adoption in industry, and 3) provides facilities to capture
requirements in a structured, semantically-rich formalism to
enable requirements-based analyses and testing. In order to
provide such a comprehensive solution, SpecML was designed
as a hybrid language extending and combining features, on one
hand, from SysML and MARTE, and, on the other hand, from
PBR theory.

The avionics industry considers that UML, with profiles
such as SysML and MARTE, provide better long term sus-
tainability and interoperability over completely custom-built
domain-specific languages [20]. A list of benefits justifying
the use of UML in the avionics industry can be found in
[11]. PBR theory is aligned with model-driven engineering,
which the avionics industry is leaning towards to reduce
software and development complexities and to support them
in their certification endeavors [2, 8, 11]. PBR theory has been
acknowledged in the SysML specification as an improvement
to SysML Requirements to address a formal expression of
requirements in SysML and expanding its ability to support
requirements-based analyses and testing.

The methodology in [21] has been followed to build
SpecML. This methodology was proposed with the purpose of
guiding the development of UML profiles that are technically
valid (i.e. do not contravene the UML standard) and of good
quality. The approach requires the development of two artifacts
that are distinct but closely related: a conceptual model of the
domain (or domain metamodel) and the UML profile itself.
The general flow of the approach is fairly simple: develop the
domain metamodel and, then, map its concepts to elements in
the UML metamodel. Depending on the domain metamodel’s
complexity there may need to be a few iterations of the
process to ensure conformance with UML. In the following
subsections, we discuss SpecML features. A usage example
of the profile is presented in Section IV.

A. The SpecML profile

SpecML is designed as a UML profile that augments SysML
Requirements with new constructs. SysML 1.5 was selected
since this version is more open to extensions regarding require-
ment specification compared to previous versions. SpecML
has the common structure of a UML profile: data types,
stereotypes and OCL constraints. No custom data types are
defined, hence, UML primitive types are used to define the
attributes owned by the stereotypes. Specialized stereotypes
are defined to capture key concepts of requirements speci-
fication in accordance with DO-178C. OCL constraints are
defined to enforce additional necessary checks to achieve
DO-178C objectives. The stereotypes and OCL constraints in
SpecML can be categorized into three groups: 1) requirement
hierarchy, 2) requirement interrelationship, and 3) requirement
formalization.

B. Requirement hierarchy with SpecML

Figure 1 shows the stereotypes to represent DO-178C’s
requirement hierarchy. The abstract stereotype Requirement
extends the SysML AbstractRequirement stereotype. This
inheritance provides the facilities to capture natural language
requirement statements (the text attribute) and specify an
identifier (the id attribute). On top of that, the SpecML Re-
quirement stereotype adds attributes to further characterize
a requirement, like type (structural, behavioural, mixed),
source (e.g., acquirer, operator, certification authority, certi-
fication standard) and status (pending review, reviewed and
accepted, reviewed and incorrect). The isDerived attribute is
used to indicate that the requirement is not directly traceable
to higher level requirements because it specifies behaviour
beyond what has been specified in them.

«stereotype»
Requirement
attributes

+ type : RequirementType
+ source : RequirementSource [1..*]
+ status : RequirementStatus
+ isDerived : Boolean
+ isStable : Boolean
+ isVerifiable : Boolean
+ isConsistent : Boolean
+ isFormalizable : Boolean
+ revision : Integer
+ creationDate : Date
+ modificationDate : Date

«stereotype»
SysML::AbstractRequirement

attributes
+ id : String
+ text : String

«stereotype»
SystemRequirement

attributes
+ isAllocatedToSoftware : Boolean

«stereotype»
HighLevelRequirement

attributes
+ precludesCFC : Boolean
+ describesDesignDetail : Boolean
+ describesVerificationDetail : Boolean

«stereotype»
LowLevelRequirement

attributes

«Metaclass»
UML4SysML::Class

Fig. 1. Requirement hierarchy stereotypes.

The SystemRequirement, HighLevelRequirement and
LowLevelRequirement stereotypes specialize the Require-
ment stereotype to define the requirement hierarchy found
in DO-178C. The SystemRequirement stereotype represents
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the highest level requirements in the hierarchy. SystemRe-
quirements are system requirements allocated to software
(SRATS) when the isAllocatedToSoftware attribute is set
to true. Recall that SRATS are the ones developed and refined
into software requirements. System requirements are specified
during the system life cycle processes, beyond the regulatory
scope of DO-178C. Only SRATS are considered for software
development. However, the SystemRequirement stereotype
provides the possibility to formalize any system requirement
to enable its analysis and testing as well.

The HighLevelRequirement stereotype (HLR for short)
represents the software requirements that are produced directly
from the refinement of SRATS. Attributes of HighLevel-
Requirement (i.e. precludesCFC, describesDesignDetail
and describesVerificationDetail) support analyses for DO-
178C compliance. For instance, OCL constraints defined over
the last two attributes enforce the specification of a rationale
when these attributes are set to true. A rationale is mandatory
in these situations for DO-178C certification. The preclude-
sCFC attribute indicates if the requirement intends to prevent
one or more of the identified software contributions to the
system’s failure conditions.

The LowLevelRequirement stereotype (LLR for short)
represents the software requirements from which source code
can be directly implemented without further information, i.e.
the detailed design. This stereotype can be used as a stand-
alone element to capture natural language or formal require-
ment statements, or be applied onto UML/SysML model
elements that represent the software’s design.

C. Requirement interrelationship with SpecML

Figure 2 presents the stereotypes for defining the types
of relationships that can occur between requirements. The
RefineReqt stereotype is an alias to the SysML DeriveReqt
stereotype to align it with the DO-178C vocabulary. The
stereotype represents a bi-directional trace in which a re-
quirement can be refined into a lower-level requirement. This
relationship goes from the refining requirement (e.g., the HLR)
to the refined requirement (e.g., the SRATS).

The Copy relationship is as defined in SysML but with a
more constrained usage. HLRs must be very detailed so as
to guide the software’s design. However, it could occur that
SRATS are, in fact, very detailed so as to guide the software’s
design without any further refinement into HLRs. In this case
HLRs must be defined and related to their corresponding
SRATS using the Copy relationship, which will indicate that
they are a read-only copy of the supplier requirement (i.e. the
SRATS).

The Derive stereotype is included to make it possible
to trace derived requirements indirectly to a higher level
requirement through the mediation of the requirement from
which they were derived. Requirements at the same level of the
requirements hierarchy may experience some interdependence.
The Coupled stereotype makes it possible to represent such
relationship between two requirements.

«stereotype»
RefineReqt

«stereotype»
SysML::Trace

«stereotype»
SysML::DeriveReqt

«stereotype»
SysML::Copy

«stereotype»
Coupled

«stereotype»
Copy

«stereotype»
Derive

Fig. 2. Requirement interrelationship stereotypes.

OCL constraints (not shown due to lack of space) defined
over all these relationship stereotypes enforce the necessary
checks to achieve DO-178C objectives.

D. Structured, semantically-rich requirements with SpecML

One of the notable features of SpecML is its ability to
capture requirements in a structured, semantically-rich for-
malism in order to enable requirements-based analyses and
testing. Figure 3 shows the stereotypes to capture requirement
formalizations. The formalism is founded on the property-
based requirement (PBR) theory as defined in [14, 19], and
the MARTE profile, since, as mentioned in Section II-B, PBR
theory lacks constructs for expressing timing constraints and
clocks. In avionics systems, the values of their properties
commonly need to be evaluated repetitively at a given fre-
quency. This information is part of the system requirements
but cannot be captured using the PBR as it was defined.
The MARTE profile (particularly the CoreElements, Time
and NFPs sub-profiles) contains constructs for specifying
such time-dependent behaviour and constraints. Thus, SpecML
borrows these constructs from the MARTE profile to annotate
PBRs that are time-sensitive.

The following expression formalizes a PBR:
Req: [when C ]→ val(O.P ) ∈ D ⊂ im(P ).
The term Req is a mandatory, unique requirement identifier.

The rest of the expression is intended to read as follows:
“when condition C is met, the value(s) of property P of object
O shall be in the subset D of the set of possible values for
P”. The presence of a condition C is optional as indicated
by the presence of square brackets. The theory states that the
conjunction of a finite set of PBRs {Reqn} denotes the system.

The PropertyBasedStatement stereotype establishes a
formalized statement of a requirement following the PBR
theory. The previous PBR expression is broken down to
simplify its representation with the profile. The id attribute
in PropertyBasedStatement captures the Req term of the
expression. An additional text attribute can hold a textual
description of the formalization if necessary. The optional
expression [when C ] is a condition of actualization in the
context of the requirement. This expression can be captured
with a SysML ConstraintBlock and linked to the Property-
BasedStatement with a dependency stereotyped by Condi-
tion. The mandatory expression val(O.P ) ∈ D ⊂ im(P ) is a
predicate representing the constraint over the value of a system
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property. This expression can be captured as well with a
SysML ConstraintBlock and linked to the PropertyBased-
Statement with a dependency stereotyped by Predicate.

One property-based statement may not be sufficient to cap-
ture the entire requirement described in the natural language
statement. Thus, additional PropertyBasedStatements may
be introduced as part of the requirement’s formalization. A
dependency stereotyped by Formalization links each Prop-
ertyBasedStatement to the requirement. The requirement
is, therefore, interpreted as the conjunction of the specified
PropertyBasedStatements.

«stereotype»
PropertyBasedStatement

attributes
+ id : String
+ text : String

«Metaclass»
UML4SysML::Dependency

«stereotype»
Predicate

«stereotype»
Formalization

«stereotype»
Condition

«Metaclass»
UML4SysML::Class

«stereotype»
TimedDomain

«stereotype»
MARTE::Time::TimeRelatedEntities
::TimedElements::TimedDomain

«stereotype»
MARTE::Time::TimeRelatedEntities
::TimedEventModels::TimedEvents

::TimedEvent

«stereotype»
TimedEvent

«stereotype»
MARTE::Time::TimeRelatedEntities

::TimedObservations
::TimedInstantObservation

«stereotype»
TimedInstantObservation

«stereotype»
MARTE::Time::TimeRelatedEntities

::TimedConstraints
::TimedDurationConstraint

«stereotype»
TimedDurationConstraint

Fig. 3. Requirement formalization stereotypes.

The TimedDomain stereotype indicates a container of
clocks. The stereotype must be applied onto a UML Package.
Requirements in a TimedDomain package may use the
clocks contained in it to express behaviour that is time-
dependent. The TimedEvent stereotype is as defined by the
MARTE specification but with a more constrained usage.
The stereotype establishes a non-functional annotation on a
requirement indicating that the specified behaviour needs to be
performed with a predetermined frequency (i.e. it is explicitly
bound to a clock).

The TimedDurationConstraint stereotype imposes a
constraint on the temporal distance between two events. This
stereotype is included to allow the expression of timing
constraints between specified behaviour. The TimedInstan-
tObservation stereotype is as defined by the MARTE spec-
ification but with a more constrained usage. The stereotype
denotes an instant in time that is associated with an event
occurrence and observed on a given clock. This stereotype is
included to allow the observation of event occurrences and
allowing their use in the expression of timing constraints on
the specified behaviour. The stereotype must only be applied
to a PropertyBasedStatement.

IV. VALIDATION

This section reports on the validation of SpecML. Subsec-
tion IV-A describes the reference implementation of SpecML
used for the validation. Subsection IV-B presents the avionics
software case study carried out to evaluate the language’s
effectiveness. Subsection IV-C discusses the results of the
case study. Subsection IV-D discusses threats to validity and
limitations.

A. Reference implementation

SpecML is tool-independent, any UML modelling tool
supporting UML profiles could be used to implement it. A
reference implementation was implemented with the Eclipse
Papyrus modelling environment [22]. The reference imple-
mentation comprises three components: 1) the profile, 2) the
validation rules, and 3) the modelling tooling. The profile
component defines the stereotypes for the language. The
validation rules component defines the OCL constraints for
the language and utilizes Papyrus’ model validation framework
for their execution by the user while creating a model. The
modelling tooling component provides the user with facilities
to create a specification model, i.e. editor with palette and
context menus, and properties view.

Figure 4 displays a screenshot of the SpecML reference
implementation. The middle of the screen shows the model
editor with a model being created. On the right of the screen
is the palette with the available language constructs. On the
left center of the screen is the model explorer presenting
all the elements currently in the model. At the moment, the
model contains one SRATS (in red) and one HLR (in blue).
The bottom of the screen displays a model validation error
message indicating a violation of an OCL constraint by one
of the model elements. The element causing the violation is
marked in both the model editor and model explorer. The error
message suggests options to the user for fixing the violation.

Fig. 4. Screenshot of the SpecML reference implementation.

B. Case study

In order to validate SpecML, it has been used in an avionics
industrial case study of an aircraft’s flight control software
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(FCS). An open-source system description and software re-
quirements written in natural language of an FCS is presented
in [23]. The FCS is responsible for providing attitude1 and atti-
tude rate control based on pilot input commands to keep them
within the flight envelope of the aircraft. The FCS controls
three hydraulic actuators that allow the aircraft to pitch up or
down, roll right or left, and yaw right or left. There are eleven
system requirements allocated to software (identified by the
prefix SR_ and a unique number), which have been refined
into thirteen high-level software requirements (identified by
the prefix HLR_ and a unique number). For lack of space
only one SRATS and its refining HLR are discussed.
SR_4 Hydraulic Actuator Control Loop Performance.
The FCS shall control the hydraulic actuator position with
a minimum bandwidth of 10Hz and a minimum damping of
0.4.
HLR_4 Hydraulic Actuator Loop Control. Each hydraulic
actuator loop shall be implemented as a PID (proportional/in-
tegral/derivative) control loop operating at a 1ms frame rate.
The proportional gain shall be 0.3. The integral gain shall be
0.12. The derivative gain shall be 0.02.

The specification of SR_4 and its refinement by HLR_4
using the SpecML reference implementation is shown in
Figure 5. Figure 6 presents the specification using the SysML
notation. HLR_4 is formalized with one PropertyBased-
Statement and one ConstraintBlock as the predicate. Note
that no condition is stated. The predicate is defined in terms
of more basic ConstraintBlocks that map to the different
mathematical expressions in a PID loop. These Constraint-
Blocks are nested into the ConstraintBlock representing
the predicate through the SysML containment relationship.
The MARTE TimedEvent stereotype is used to capture the
1ms frame rate operation of the PID loop. The stereotype is
applied onto the PropertyBasedStatement and displayed as
a comment.

Producing the requirement specification model of the FCS
with SpecML is only an intermediate goal in the software
development process. The requirements are then allocated to
entities of the design models intended to satisfy them using the
SysML Satisfy dependency. SysML parametric diagrams can
also be included to describe usages of the constraint blocks
formalizing the requirements in the constraining of properties
of the entities in the design models. This modelling establishes
the method of evaluating design compliance with the specified
requirements. Moreover, the property-based statements can be
used to generate test cases.

C. Discussion
The process of using SpecML to specify the requirements

of the FCS was iterative. Three domain experts and one soft-
ware development expert reviewed the SpecML requirements
specification model. Four benefits of using SpecML can be
highlighted with the case study.

The first benefit regards requirement specification in accor-
dance with DO-178C. All the FCS requirements (SRATS and

1The aircraft’s orientation about its center of mass.

HLRs) were modelled in a hierarchical way along with their
interrelationships satisfying DO-178C objectives. The second
benefit is that SpecML can relieve requirements engineers
from the error-prone and labor-intensive work of manually
verifying every requirement for compliance with DO-178C
objectives. While building the specification model, several
errors related to deviations from DO-178C objectives were
detected with the reference implementation and corrected ac-
cordingly. The third benefit pertains to facilitating communica-
tion between stakeholders by capturing requirements in natural
language while still allowing requirement formalization to en-
able analyses and testing. The thirteen HLRs were formalized
using the specialized stereotypes for such purpose. As with
any model, SpecML does not actually perform requirement
analyses or testing, it is intended to provide facilities that
enable requirements-based analyses and testing.

It is to be acknowledged that requirements specification
standards vary from one company to another. This results in
different ways of writing the same requirement statement. The
fourth benefit is that SpecML can accommodate review efforts
already put in place to check compliance with requirements
specification standards. Requirement statements in SpecML
are first represented in natural language and must be clearly
defined. The quality of the requirements is dependent on such
descriptions since they will be translated into PBR statements.

D. Validity and limitations

A systematic approach was followed for the analysis of DO-
178C, as well as for the development of SpecML. In-depth
discussions to validate the proposed stereotypes in SpecML
took place with industrial practitioners that have ample exper-
tise in both avionics development and DO-178C certification.
There is a threat of having missed some concepts of the DO-
178C guideline when analyzing it. This threat was mitigated
by having a thorough understanding and iterative analysis of
the guideline. Feedback from the industrial practitioners was
also considered to mitigate the threat.

We evaluated SpecML through the FCS case study, which
limits the conclusions about its usefulness and usability. How-
ever, the FCS was considered by the involved practitioners
to be complex and representative of their industrial needs.
Furthermore, MathWorks published the FCS case study to
showcase the usability and highlight features of their MDE
tool suite, which helps to deem it as representative. The use
of an open-source system description allows comparisons and
replication of the evaluation. The goal of this evaluation is not
to prove SpecML applies to all avionics software requirements
but rather show its application is feasible and can lead to
DO-178C-compliant requirement specifications as well as to
effective requirement analyses and testing. The results of the
evaluation suggest SpecML is likely to provide engineers with
potential gains in these regards.

SpecML’s requirement formalization approach is primarily
based on the property-based requirement (PBR) theory in [14,
19]. This is a fairly recent theory of requirement specification
and more studies are needed to widely identify its limitations
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Fig. 5. Screenshot of the specification and formalization of HLR_4 with the SpecML reference implementation.

«Predicate»«Formalization»
«HighLevelRequirement»

HydraulicActuatorLoopControl

attributes
id=“HLR_4”
text=“Each hydraulic actuator loop shall be 
implemented as a PID control loop operating 
at a 1ms frame rate. The proportional gain 
shall be 0.3. The integral gain shall be 0.12. 
The derivative gain shall be 0.02.”

«PropertyBasedStatement»
CommandLoopControl

attributes
id=“HLR_4_Formal”
text=“Command loop control”

«ConstraintBlock»
CommandLoopControlPredicate

parameters
Command : Real
FeedbackProcessed : Real
CommandOutput : Real

«ConstraintBlock»
PIDController

constraints
{ CommandOutput=P+I+D }

parameters
CommandOutput : Real
P : Real
I : Real
D : Real

«ConstraintBlock»
ProportionalTerm

constraints
{ P=0.3*e }

parameters
P : Real
e : Real

«ConstraintBlock»
IntegralTerm

constraints
{ I=0.12 *⌠t e ∂t }
            ⌡0

parameters
I : Real
e : Real
t : Real

«ConstraintBlock»
DerivativeTerm

constraints
{ D=0.02*∂e/∂t }

parameters
D : Real
e : Real
t : Real

«ConstraintBlock»
Error

constraints
{ e=x-y }

parameters
e : Real
x : Real
y : Real

«SystemRequirement»
HydraulicActuatorLoopControlPerformance

attributes
id=“SR_4”
text=“The FCS shall control the hydraulic 
actuator position with a minimum bandwidth 
of 10Hz and a minimum damping of 0.4.”
isAllocatedToSoftware=true

«TimedEvent»
{ on=idealClk, every=(1,ms) }

«RefineReqt»

Fig. 6. Specification and formalization of HLR_4 with SpecML.

about the kinds of requirements that can be effectively spec-
ified as PBRs. The FCS case study certainly does not cover
all kinds of requirements. For instance, the case study does
not include requirements involving the sequencing of property
evaluations which is supported by SpecML.

SpecML’s reference implementation is dependent on the
Eclipse Papyrus modelling environment. Some of the features
of SpecML could not be properly implemented because of
limitations in Papyrus’ UML, SysML and MARTE implemen-
tations. Papyrus does not implement SysML 1.5, only SysML
1.4, which limits extensions that can be done to the Require-
ment stereotype. Papyrus’ implementation of the MARTE
profile was archived and could not be used successfully to
integrate it with Papyrus’ current implementation of UML.
However, this by no means limit SpecML as its reference
implementation can be developed differently.

V. CONCLUSION

Current avionics software industry practices have require-
ments specified using natural language, which facilitates stake-
holder communication but makes them difficult to use in
requirements-based analyses and testing. Thus, an approach
that combines both natural language and formal require-
ments is important to allow stakeholder communication and
requirements-based analyses and testing. This paper proposes
SpecML, a modelling language that provides a requirements
specification infrastructure for avionics software in the con-
text of DO-178C. SpecML captures requirements in natural
language and the structured formalism of PBRs, and provides
facilities to satisfy the DO-178C objective regarding require-
ments specification and their verification.

A reference implementation was developed on top of the
Eclipse Papyrus modelling environment. The validation of
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SpecML was carried out through the realization of an em-
pirical evaluation with the FCS case study. This showed the
effectiveness of SpecML for requirement specifications. All
the requirements of the FCS were modelled and, in addition,
checked for compliance with DO-178C objectives. Then, it
was showed that requirements-based analyses and testing can
be performed from the information captured in the resulting
SpecML model.

Future work involves an empirical evaluation carried out on
larger scale industrial systems. As part of this, the language
should be refined and improved. SpecML can be extended
in several ways, including: 1) the integration of constructs to
represent data dictionaries (i.e. data requirements), and 2) the
development of a methodology to translate natural language
requirement statements into PBR statements. The reference
implementation is considered a prototype. Improvements can
be made to the modelling tooling to provide a more interactive
inspection and editing of requirements. Additional functions
can be developed as well, like the (semi-)automatic generation
of reports from the data that is captured.
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