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ABSTRACT
Software requirement specification (SRS) document is the most
crucial document in software development process. All subsequent
steps in software development are influenced by the requirements.
This implies that the quality of SRS influences the quality of the soft-
ware product. However, issues in requirement, such as ambiguities
or incomplete specificationmay lead tomisinterpretation of require-
ments which consequently, higher the risk of time and cost overrun
of the project. Finding defects in the initial phase is crucial since the
defect that found late is more expensive than if it was found early.
Thus, the requirement should be tested before moving to other
development phases. This study describes an automated approach
for detecting ambiguous software requirement specification. To this
end, we propose the combination of text mining and machine learn-
ing. Since the dataset is derived from Malaysian industrial SRSs and
the respondents’ that evaluated our result are from Malaysia, we
focus this study on Malaysian context for a pragmatic reason. We
used text mining for feature extraction and for preparing the train-
ing set. Based on this training set, the method ’learns’ to classify
ambiguous and non-ambiguous requirement specification. In this
paper, we study a set of nine classification algorithms from the ma-
chine learning community and evaluate which algorithms perform
best to detect ambiguous software requirement specification. We
take a step forward to develop a working prototype to evaluate the
reliability of our approach. The validation of the working prototype
shows that the classification result is reasonably acceptable. Even
though this study is an experimental benchmark, we optimist that
the result of this study may contribute to enhance the quality of
SRS and as well as assisting the requirement testing or review.
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1 INTRODUCTION
Software requirement is the foundation of software development.
Hence, high-quality software requirements specification (SRS) may
increase the possibility of high software quality. It is just like the
term "garbage in, garbage out" that has been used in software pro-
gramming which means "If there is a logical error in software, or
incorrect data are entered, the result will probably be either a wrong
answer or a system crash" [10]. For companies that outsource their
software development, software requirements document is the most
crucial communication document that specifies the stakeholder’s vi-
sion and needs of software to be developed. Hence, a good software
requirements document is needed to ensure the software developers
understand the stakeholder needs.
Research Problem. Issues in software requirements, such as am-
biguities or incomplete requirements specification can lead to time
and cost overrun in a project [13]. A problem in a software require-
ment specification need to be detected as early as possible since
the problem that found late in the project is more expensive than
if it was found early [8]. Some of the issues in requirements speci-
fication can be manually detected by the requirements engineers
and some are not possible. For example, the requirements specifica-
tion that ambiguous, unclear and incomplete can be easily detected
by the requirement engineer but the requirements that related to
the domain knowledge is difficult to be detected. Consequently, an
approach that offers requirements engineers rapid detection to a
possible defect in specification could contribute valuable feedback
[12].

Software requirements defects detection based on requirements
template (also known as boilerplate) is feasible based on the work
by Arora et. Al [6],5. As the baseline, Arora et. al used the require-
ment templates from the ISO/IEC/IEEE 29148 [1] and the template
proposed by Pohl and Rupp [24]. However, since requirements in
the industry are nearly exclusively written in Natural Language,
it is hard to detect the issues in requirements because a natural
language has no formal semantics. In the Malaysia context, most
of the Industrial SRSs are written in Malay. A lot of research has
been conducted to solve this problem are focused on English. There
are little works focused on Malay. Furthermore, the boilerplates
for formulating requirement are not commonly used in Malaysia
that make the requirements testing or review much more difficult.
While most of the work used Natural Language Processing (NLP)
to detect requirements defect, another possible technique for de-
tection of requirements detection is by using text mining. Text
mining generally refers to the process of extracting interesting and
non-trivial patterns or knowledge from unstructured text docu-
ments [19]. Since the requirements are in the form of unstructured
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text, text mining is a suitable technique for detecting ambiguous
requirement specifications.
Goal. The main objective of this work is to come out with an auto-
mated approach on detecting the defect in software requirement
specification. In this paper, we aim at formulating an automated ap-
proach to detect ambiguous software requirement specification. To
this end, we propose a combination of text mining and supervised
machine learning. We focus on detecting ambiguous SRS written in
Malays since the dataset is derived from Malaysian Industrial soft-
ware development and the respondents for validating our proposed
solution are from Malaysia.

The dataset consists of occurrence of feature-words. This dataset
is originated from 180 requirement specifications (gathered from 4
Malaysia Industrial SRSs). The 180 requirement specification have
been tagged or labeled manually (ambiguous or non-ambiguous).
Supervised machine learning technique is used learn and classify
the ambiguous requirements. We explore nine (9) classification
algorithms to find the suitable classification algorithms for our pur-
pose. The classification algorithms are OneR, Naive Bayes, Logistic
Regression, Nearest Neighbour (k-NN), Decision Table, Decision
Stump, J48, Random Forest and Random Tree. We develop a work-
ing prototype to evaluate the reliability of the result and our overall
approach. The working tool is validated by ten (10) requirement
engineer/system analyst.
Contribution. The contributions of this paper are the following:

• Formulation of feature-words based on SRS document.
• Exploring predictive power of feature-words
• Evaluation of nine classification algorithms for detecting
ambiguous requirements.

• An automated tool-supported approach for detecting am-
biguous software requirements.

This paper is structured as follows. Section 2 discusses the re-
lated work. Section 3 describes the research questions and Section
3 explains the approach. We present the results and findings in Sec-
tion 5. Discussion and Future Work in Section 7. This is followed
with conclusion in Section 8.

2 RELATEDWORK
Various works have been done on software requirements quality
assurance. There are also works focusing on the classification of
quality characteristics (e.g. [9]) and others develop a comprehensive
checklist [4], [7] and [26]].

Arora et. al [5] proposed an automated solution and tool-supported
[6] approach for checking conformance to requirements templates.
The work is based on two (2) requirement templates which are
Rupp’s templates [8] and Easy Approach to Requirement Templates
(EARS) [20]. The approaches build on a natural language processing
technique, known as text chunking.

Femmer et. al [12] proposed an approach for smelling bad re-
quirement based on requirement quality criteria listed at the ISO
29148 - requirement engineering standards [1]. This work aimed at
rapidly detecting requirements that violate the Requirement Engi-
neering principles. They also develop a tool to detect the require-
ments principles violation by using part-of-speech (POS) tagging,
morphological analysis and dictionaries.

Alshazly et. al. [3] concerned with detecting defects in software
engineering specification based on defect taxonomies. They pro-
posed a taxonomy focusing on the defects in the requirements
phase and added correlations between the defects and the causes
of their occurrences to guarantee the quality of SRS documents.
The taxonomy intended to help in training the software engineer,
SRS writers, support creating accurate requirements and efficient
requirement defect prevention and requirement defect detection.

Haron et. al. [15] formulated a conceptual model on managing
lexical ambiguity to reduce the possibility of misinterpretation er-
rors in Malay sentences by identifying potential Malay vague words.
Prior to this work [16], they performed a research to identify a list
of potential ambiguous word in Malay language that intended to as-
sist SRS writers or requirement engineers to avoid using the vague
words while documenting SRS. This ongoing study has collected
120 potential ambiguous Malay words which can potentially be
used as the reference in developing SRS.

There are also work on improving software requirements speci-
fication by using NLP and text mining such as the work by Sateli
et. al. [25]. The summary for the recent works are the following:

a. Most of the works for detecting defect in requirements specifi-
cation refers to several requirement structures such as Rupp’s,
EARS, IEEE 830 and ISO/IEC/IEEE 29148. From our observation,
not all requirements following the requirement structure but
still the requirement are still understandable or in fair quality
requirement. It is important to have a technique that detect
requirements defect based on truly unstructured text.

b. It is difficult to validate the requirements defect detection based
on the aforementioned requirement templates since case studies
that follow the requirement structure are limited.

c. Requirement specification is highly related to the underlying
language used to express the requirement. Most of the works
focus on English as the basic language. The list of ambiguous
words provided by Haron et. al. [15],[16] is beneficial to be used
in our research which focuses on Malaysian Context.

3 RESEARCH QUESTIONS
In the context of the research problems specified in section 1, this
paper intended to answer the following research questions:
RQ1. What are the influential words in classifying ambigu-
ous software requirements? We explore the predictive (classi-
fication) power of each words that exist in software requirement
specifications which are used in this study. We also evaluate the
predictive power of words that are suggested by Haron et. al[17]
and are mentioned in Berry et. al. [8].

RQ2. What are suitable classification algorithms in classify-
ing ambiguous software requirement? The candidate classifi-
cation algorithms are evaluated to find the suitable algorithm(s) in
classifying ambiguous software requirement.

RQ3. Which set of words produce the best classification per-
formance? We explore how the performance of the classification
algorithm is influenced by partitioning the words in different sets.
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Figure 1: Overall Approach

4 APPROACH
This section describes the overall approach (as illustrated in figure
1) that consist of data collection, data preprocessing, text processing,
text classification, prototype development and validation.

4.1 Data Collection
The main data for this work is the SRS documents. As mentioned
in section 1, this study is an early work of automated detection on
ambiguous software requirement for SRS written in Malay. Thus,
we have selected four (4) SRS documents from four (4) separated
(Malaysian) software development projects. Out of these four (4)
documents, we extracted 180 software requirement specifications
that we believe are suitable to be in the dataset.

4.2 Document Preprocessing
In Document Preprocessing, there are two (2) major activities in-
volved which are data labeling and data cleansing or filtering.

a. Data Labeling
In data labeling activity, we manually classify each extracted
requirement specification into (i) ambiguous or Y and, (ii) non-
ambiguous or N. This labels are crucial for supervised machine
learning purposes.

b. Data Cleansing
Data Cleansing refers to the process of detecting and correcting
(or removing) corrupt or inaccurate records from a record set,
table, or database and refers to identifying incomplete, incorrect,
inaccurate or irrelevant parts of the data and then replacing, mod-
ifying, or deleting the dirty or coarse data [27]. This activity will
clean or scrub the unstructured text (software requirement speci-
fication) that consists of stop word removal, stemming and word
filtering. Since the library for stop word removal and stemming
for Malay language is not available, this activity is conducted
manually. We also convert all short forms words into formal
words (e.g. "yg" to yang).

4.3 Text Processing
The expected output of this activity is a text dictionary that consist
of classification features and labels. We consider all words that
are exist in the selected requirement specifications as our features
(called feature-words). In total, there are 405 feature-words gathered
from 180 requirement specifications. The text dictionary is created
based on the following steps:

(1) Calculate all number of occurrence for each feature-words
in each software requirements.

(2) Integrate the label and the software requirements.
This text processing activity is supported by RapidMiner [2]. An
example of text dictionary is illustrated in Table 1.

4.4 Text Classification
The text classification process aims at (i) performing univariate
analysis to measure the predictive power of each feature-word,
(ii) selecting the suitable classification algorithms for building a
classification model to classify ambiguous and non-ambiguous re-
quirement and, (iii) evaluating different sets of feature-word. The
explanation of these tasks are the following:

Univariate analysis
To measure predictive power of predictors (feature-words in our

case), we used the information gain with respect to the class [33].
Univariate predictive power means measuring how influential a sin-
gle feature-word is in prediction or classification performance. The
results of this algorithm are normally used to select the most suit-
able predictor for prediction purposes. Nevertheless, in our study
we did not use it for predictor selection, but for an exploratory
analysis of the usefulness of various feature-words. We compare
the feature-words that we found in our study with the ambiguous
words that are suggested by Haron et. al. [15] and the words men-
tioned in Berry et. al. [8].

Classification algorithm selection
This process is divided into several task: (i) classification algo-

rithms candidate selection; (ii) classification model construction
and (iii) classification model evaluation. The detail explanations are
the following:
i. Classification algorithms candidate selection
Prior to making a selection of the classification algorithms, we
ran exploratory experiments on a wider range of supervised
machine learning algorithms. We do not expect that there will
be a single silver bullet algorithm that will outperform all oth-
ers across our dataset. Also, we are not just interested in a
single algorithm that scores a top result on a given problem,
but are looking for sets of classification algorithms that produce
a reasonable result for the dataset. In this way, we will open
the possibility of mixing the classification algorithms for better
classification performance. As mentioned above, we desired to
explore a diverse set of classification algorithms representative
for different approaches. For example, decision trees, stumps,
tables and random trees or forests all divide the input space up
in disjoint smaller sub spaces and make a prediction based on
occurrence of positive classes in those sub spaces. K-NN are
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Table 1: Text Dictionary Example

yang sistem akan maklumat dan untuk telah mohon guna boleh proses ..(405 words) Label
Req.1 0 0 0 0 0 1 0 0 0 1 0 .. N
Req.2 1 0 0 1 0 0 0 0 0 1 0 .. Y
Req.3 2 1 0 0 0 1 0 0 0 0 0 .. Y
Req.4 1 0 1 0 2 3 0 0 1 0 2 .. Y
Req.5 2 0 1 0 1 0 0 0 1 0 0 .. Y
Req.6 1 0 0 1 1 0 0 0 0 2 1 .. Y
Req.7 0 0 1 0 0 1 0 0 0 0 1 .. N
Req.8 4 0 1 0 0 1 0 0 0 1 0 .. Y
Req.9 1 0 0 0 0 0 0 0 0 0 0 .. N

similar local approaches, but the sub spaces here are overlap-
ping. In contrast, logistic regression and Naive Bayes model
parameters are estimated based on potentially large number
of instances and can thus be seen as more global models [21].
On the other hand, OneR generates one-level decision tree ex-
pressed in the form of a set of rules that all test one particular
attribute [14]. More explanation about these algorithms can be
found at [14] and [22].

ii. Classification model construction
This task is supported by WEKA [14] (tool). We used default
configuration suggested by WEKA for the training activity
for each classification algorithms. For every training and test
activity for the classification algorithm, we used 10-fold cross
validation, it means that we use only 10% of the data for testing
and 90% for training. To further improve reliability, we ran each
experiment 10 times using different randomization.

iii. Classification model evaluation
The classification algorithms are considered to be suitable for
our purpose based on its classification performance. Since our
dataset is reasonably balance, we evaluate the classification
performance based on three measurements: (i) accuracy (per-
centage of correct classification), (ii) precision () and, (iii) recall.
At first, we evaluated the classification algorithms performance
against accuracy of ZeroR (the baseline). ZeroR predict the ma-
jority class (if nominal) or the average value (if numeric) [14].
This classifier does not take feature as the predictor and present
the percentage of probability or random guessing. Accuracy
value below ZeroR shows that the model (created by the classi-
fication algorithm) does not make any significant improvement
in classifying the ambiguous requirement compared to random
guessing. Hence, the classification algorithm accuracy value
should better higher than ZeroR. Then, we compare the clas-
sification algorithm based on precision and recall. Precision
and recall are common in information retrieval for evaluat-
ing classification performance [11]. If needed, we evaluate the
F-Measure (balance between precision and recall) of the classi-
fication algorithms performance.

Evaluation of feature-words set performance
The univariate analysis is intended to show the predictive per-

formance for individual feature-words. However, this analysis does
not show the predictive performance for set of features. To evaluate
the performance sets of feature-words, we created additional three

(3) datasets: (i) use only words suggested by Haron et. al as set
of feature-words, (ii) use only words mentioned in Berry et. al. as
feature-words and (iii) combine both datasets from (i) and (ii). We
evaluated the performance of all datasets against all classification
algorithm candidates.

4.5 Prototype Development and Validation
In this study, we aim at formulating an automated approach to assist
requirement engineers to detect ambiguous software requirement
specification. We build an interactive prototype tool to classify
ambiguous and non-ambiguous requirement specification based
on the evaluated classification model. Based on this prototype, we
validate our (initial) approach by conducting a survey.

5 RESULT AND FINDINGS
This section describes i) evaluation on predictive power of feature-
words, (ii) evaluation on classification algorithms performance and,
(iii) analysis of datasets. Each of the following subsection answers
the Research Questions that have been mentioned in section 3.

5.1 RQ1: Feature-words evaluation
Attribute Evaluator analysis from WEKA (tool) is used to evalu-
ate the influence of each feature-words in classifying ambiguous
and non-ambiguous requirement specification. This evaluation pro-
duces a score from 0 to 1 for every feature-words. A value closer
to 1 means strong influence. We consider a predictor as influential
when the Information Gain score > 0. Out of 405 feature-words
that are extracted from 180 software requirement specification, we
found that 94 feature-words have Information Gain score > 0. These
feature-words have the score ranging from 0.3010 to 0.0205.

Table 2 shows the list of 30 most influential feature-words. Based
on our best knowledge and experience, these words are common
words that can be found in SRS documents. Only several words in
the list (Table 2) are domain related words such as dana ("fund"),
majikan ("employer") and emel ("e-mail"). Which means, the do-
main related words have little influence in classifying the ambigu-
ous and non-ambiguous requirements. We take a step further to
compare the list of influential feature-words with the list of am-
biguous words that were suggested by Haron et.al. [17] and were
mentioned in Berry et. al [8]. We matched the words that were
suggested/mentioned in both study with our feature-words. The
Information Gain value for these words are presented in Table 3
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for Haron et. al and Table 4 for Berry et. al. We discovered that
several words that have been listed by both study influence the
classification performance. From this result, we decided to use the
list of words by both study as our permanent feature-words in our
prototype.

Table 2: List of 30 influential words based on InfoGainAt-
trEval Score

No word InfoGain
score

No word InfoGain
score

1 sistem 0.3010 16 jika 0.0747
2 papar 0.2855 17 buat 0.0662
3 dan 0.2371 18 semak 0.0662
4 akan 0.1320 19 tidak 0.0662
5 tersebut 0.1095 20 pilih 0.0636
6 maklumat 0.1090 21 yang 0.0620
7 hendaklah 0.1036 22 ahli 0.0597
8 dalam 0.1033 23 dari 0.0586
9 dana 0.1023 24 tempoh 0.0579
10 majikan 0.0861 25 telah 0.0579
11 projek 0.0841 26 emel 0.0579
12 kepada 0.0838 27 melalui 0.0579
13 proses 0.0819 28 baru 0.0579
14 boleh 0.0809 29 juga 0.0524
15 senarai 0.0762 30 sekiranya 0.0524

Table 3: Preditive power of feature-words by Haron et. al.

Word Similar feature-word InfoGain score
menghantar hantar 0.0310
mengeluarkan dikeluarkan 0.0000
menerima terima 0.0416
mengemaskini kemaskini 0.0000
maklumat maklumat 0.1090
meluluskan lulus 0.0000
notifikasi notifikasi 0.0000
untuk untuk 0.0420
sekiranya sekiranya 0.0524
khidmat perkhidmatan 0.0000
dengan dengan 0.0318
permohonan mohon 0.0000
operasi operasi 0.0000
pengguna not available not available

5.2 RQ2: Evaluation on Classification
Algorithms Performance

As mentioned in section 4, we evaluate the classification algorithms
performance based on (i) accuracy, (ii) precision and, (iii) recall.
First, we evaluate the classification algorithms performance by
comparing the classifications algorithms with ZeroR score. The
ZeroR accuracy score is 53%. As illustrated in Table 5, all candidate
classification performed better than ZeroR which means that all

Table 4: Preditive power of feature-words by Berry et. al.

Word* Similar feature-word InfoGain Score
semua semua 0.0000
setiap setiap 0.0222
sahaja sahaja 0.0000
juga juga 0.0524
walaupun walaubagaimanapun 0.0000
atau ataupun 0.0257
beberapa not available not available
bahawa bahawa 0.0000
yang yang 0.0620

* these words were translated to Malay

classification algorithm present significant improvements compare
to random guessing.

Then, we compare the classification algorithms with OneR. OneR
is the simplest classification algorithm that takes only one feature
for prediction or classification. This evaluation is done because
according to Holte[18], there is a possibility that a simple algo-
rithm works well in a dataset. If the performance of using complex
classification algorithms are not much different or same with the
simplest algorithms, it is better to use simple classification algo-
rithms for better performance (in terms of classification speed). The
result shows that OneR performs better than k-NN and Decision
Stump while Decision Table score the same result. Hence, k-NN,
Decision Stump and Decision Table are considered not suitable as
classification algorithms for our purpose.

We further our investigation by evaluating classification perfor-
mance based on precision and recall score. Again, OneR is used as
our benchmark. The result (Table 5) shows that several classification
algorithms perform well in recall but not for precision. For example,
naive bayes score high for recall (0.95) but low for precision (0.73).
To get a better picture on these classification performance, we look
at F-Measure i.e. a score that consider both precision and recall. The
result shows that Naive Bayes, Logistic Regression, J48, Random
Forest and Random Tree are suitable classification algorithms for
our purpose. Out of these five (5) classification algorithms, Random
Forest is the most suitable classification algorithms based on all the
evaluated scores.

Table 5: Classification Algorithms Performance

Accuracy Precision Recall F-Measure
OneR 78.06 0.80 0.74 0.76
Naive Bayes 80.22 0.73 0.95 0.82
Logistic Reg. 80.94 0.78 0.86 0.81
k-NN 71.89 0.64 0.94 0.76
Decision Table 78.06 0.74 0.84 0.78
Decision Stump 77.17 0.69 0.95 0.80
J48 82.67 0.83 0.82 0.81
Random Forest 89.67 0.90 0.88 0.89
Random Tree 80.89 0.78 0.85 0.81



RET2018, June 2018, Gothenburg, Sweden M.H. Osman et al.

Table 6: Classification Performance (accuracy) based on
Dataset

AllData *DataH *DataB *DataHB
OneR 78.06 65.78 60.78 65.78
Naive Bayes 80.22 65.33 58.11 67.22
Logistic Reg. 80.94 67.83 54.72 66.67
k-NN 71.89 67.89 58.22 69.83
Decision Table 78.06 62.00 56.72 63.28
Decision Stump 77.17 48.89 57.78 52.33
J48 82.67 71.17 57.83 70.89
Random Forest 89.67 70.44 59.06 76.56
Random Tree 80.89 68.22 59.00 71.39
* Data_H used feature-words suggested by Haron et. al [17];
Data_B used feature-words mentioned in Berry et. al. [8] ; and

DataHB is the combination of DataH and DataB

5.3 RQ3: Analysis on Dataset
The accuracy score for all datasets are illustrated in Table 5. This
table shows that by using all (405) feature-words, the classification
algorithms produce the best results. The other datasets score much
lower than using all words as feature-words. This result indicates
that it is not enough to only used the words that are suggested by
Haron et. al. [17] and words that are mentioned in Berry et. al. [8]
to classify ambiguity and non-ambiguity requirements.

6 PROTOTYPE AND VALIDATION
This section describes the development of the prototype and the
validation of the prototype.

6.1 Prototype Development
The main objective of this tool is to assist the requirement engi-
neer to develop a good quality requirement specification. This tool
displays several useful information on how to formulate a good
software requirement specification based on ISO/IEC/IEEE 29148
and the information from International Requirements Engineering
Board (IREB). As for now, this tool offers a functionality to detect
ambiguous and non-ambiguous requirement specification. A brief
description about this functionality is the following:

• Random Forest is used as the classification algorithm
• 180 requirement specifications are used as the learning dataset
• The feature-words shall be dynamically chosen by the user

Figure 2 shows the main page of the tool that display the informa-
tion about a good requirement and a function to detect ambiguous
requirement specification. The user need to provide the requirement
specification as the input. Then, the tool classifies the requirement
by using the classification model, then presents the classification re-
sult (see Figure 3) as well as the information about the words (words
occurrence information). This tool is developed using PHP, AJAX,
Python and JQuery. We used scikit-learn[23] library for executing
the machine learning task.

6.2 Validation
In this study, we desired to provide a pragmatic solution to this
problem. Although this study is still in an initial stage, we need to

Figure 2: Tool’s Main Page

Figure 3: Tool’s Classification Results

Figure 4: Respondents’ Background
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observe the practicality of this tool in helping requirement engineer
writing a good requirement specification. Thus, we conducted a
simple survey to validate the prototype.

This survey is conducted to measure certain attributes based on
experts’ opinion and review. Those attributes are the Information
Quality and the Usefulness of the Tool. The result of this survey is
important to indicate the acceptance, satisfaction and usefulness
of prototype tool from the experts’ view. The respondents were
required to use the prototype and then, answer several questions.
The format (Likert scale) of a six-level item is used as answer op-
tions in this questionnaire, i.e. strongly disagree,moderately disagree,
disagree, agree, moderately agree and strongly agree.

Respondents’ Background
Overall, we have selected ten (10) respondents that worked as

Requirement Engineer and System Analyst to involve in this ac-
tivity. Out of 10 respondents, three (3) respondents have less than
2 years of experience, four (4) respondents have 2 to 5 years of
experience and three (3) respondents have more than 5 years of
experience (figure 4).

Information Quality
To assess the quality of information presented in the tool, the

respondents were required to answer the following questions:
a. The result of requirement ambiguity detection is accurate?

The result shows that none of the respondent disagree that the
result of the tool is inaccurate. Seven (7) of the respondents
answeredmoderately agree, two (2) of the respondents answered
strongly agreewhile only one (1) answered agree. This shows that
from the respondent’s perspective, the result of the ambiguous
requirement specification detection is moderately accepted.

b. The tool provides me with sufficient information?
In general, we can summarize that the respondents slightly agree
that the tools provide sufficient information. From the result, four
(4) of the respondents answered agree, five (5) answered mod-
erately agree while only one (1) respondent answered strongly
agree. Perhaps, this is due to the prototype only give the classifi-
cation result and the words that are used but not the information
on what kind of word that are contribute to ambiguous software
requirement.

Usefulness of the Tool
To assess the usefulness of the tool, the respondents were re-

quired to answered two (2) question:
a. The tool increases productivity in formulating Software Require-

ment Specification (SRS)?
Most of the respondents moderately agree that the tool increase
the productivity in formulating SRS. Three (3) of the respondents
answered strongly agree while only one respondent answered
agree.

b. This tool improves the Requirement Engineer/ System Analyst
Performance in preparing SRS?
Five (5) respondents answered that they are moderately agree,
while four (4) respondents answered that they are strongly agree.
This shows that the tool can be used as a learning material for
Requirement Engineers / System Analysts to improve their SRS
preparation skills.

7 DISCUSSION AND FUTUREWORK
This section presents our discussion on the dataset, classification
model construction, prototype tool and threats to validity.

7.1 Dataset
As for now, we have processed four (4) SRS (written) and selected
180 requirement specifications. We are aware that we have a little
coverage on SRS. Furthermore, using all words as feature-words
is difficult when the data is much bigger. Nevertheless, this study
was considered as an early experimental benchmark, we intended
to observe the possibility of using text mining and supervised ma-
chine learning to solve issues related to ambiguous requirement
specification. We see a number of ways to extend this study such as
increasing the dataset, improving the ground truth (ambiguous/non-
ambiguous label), formulating more feature words (e.g. number of
words per specification, formulating weight for common ambigu-
ous word, and expend the ambiguous words that are mentioned by
Haron et. al. [15]).

7.2 Classification Model Construction
Generally, this study is expected to find the suitable algorithms to
classify ambiguous requirement based on our dataset. This study
has shown that Naive Bayes, Logistic Regression, J48, Random
Forest and Random Tree are suitable to be used as classification al-
gorithms for our dataset. Based on the classification score, Random
Forest shows the best performance in terms of precision and recall.
Hence, this classification algorithm is used in the prototype tool.
There is a possibility to enhance the performance of Random For-
est by reconfiguring the parameter. Also, combination with other
classification algorithms can be another alternative.

7.3 Prototype Tool
The purpose of developing the prototype is to evaluate the classi-
fication model with the input from the requirement engineer or
software analyst. We validate this tool to observe the reliability of
the tool in classifying ambiguous and non-ambiguous requirement
specification. Moreover, we also like to observe on the usefulness
of the prototype in helping requirement engineers and system ana-
lysts in formulating requirement specification. Although the result
is reasonably acceptable, we see a lot of improvement should be
done such as presenting the word that probably contribute to am-
biguous requirement, increase more dataset, improve feature-words
and validate the tool with more requirement engineer.

7.4 Threats to Validity
This subsection describes the threats to validity of this study that
consists of threats to internal validity, external validity and con-
struct validity.
Threats to Internal Validity: The stemming of the words in the
requirements specification during the data preprocessing was done
manually. There is possibility that we unable to find several root
words. Another threats to internal validity is the feature-words
that are based on English-Malay translation (words by Berry et. al.
[8]). These words are translated literally without comparing other
words that are also synonym but in different context.
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Threats to External Validity: We use 180 requirement specifica-
tion that are gathered from four (4) SRS. These SRS only represent
several system domain and limited pattern on requirement specifi-
cation formation. Hence, we could not generalize the result of this
study for all systems in Malaysia.
Threats to Construct Validity: We use the default parameter to
construct a classification model for each classification algorithms
candidate. There is a possibility for a classification algorithm to
produce a better classification score if the classification algorithms
parameter are configured differently. Also, there is a possibility that
several other classification algorithms that would perform better
classification that we did not covered in this study.

8 CONCLUSIONS
This study aimed to come up with an automated approach to clas-
sify ambiguous requirement specification. For a practical reason,
we focus on SRS that are written in Malay. The dataset was cre-
ated based on 180 software requirement specifications that were
extracted from four (4) SRS. We evaluated the predictive power of
each words and also compared the highly influential feature-words
for classifying ambiguous requirements with existing research. We
discovered that several ambiguous words suggested by existing
research influenced the classification of ambiguous requirement.
However, we found that there are also some other words that are
highly influential for classifying ambiguous requirements from our
dataset.

We have conducted an experiment to find the suitable classifica-
tion algorithms for our purpose. We discovered that Naive Bayes,
Logistic Regression, J48, Random Forest and Random Tree is suit-
able for our dataset. Random Forest performed the best classifi-
cation scores compared to all aforementioned algorithms. Based
on the experiment, we developed a working prototype to evaluate
the result and the reliability of our classification model. The tool
was validated by ten (10) requirement engineers/system analyst.
The validation showed that the classification result of the tool is
reasonably acceptable. Also, the validation result shows that the
tool is useful for improving the quality of SRS. Although this study
was considered as an early experimental benchmark, we believe
that the result of this study provides a significant contribution for
improving SRS quality as well as supporting requirement testing
or review task.
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