
Measuring and Improving of Testability for Testing
Requirements in an Industrial Context by Applying

the Goal Question Metric Approach
Armin Beer

Beer-Test Consulting
Baden bei Wien

Austria
armin.beer@bva.at

 Michael Felderer
University of Innsbruck, Austria
Blekinge Institute of Technology,

Sweden
michael.felderer@uibk.ac.at

ABSTRACT
There are two basic constraints in testing: cost and quality. The
cost depends on efficiency of testing activities and quality and
testability. The practical experience of the author in large-scale
systems shows that if requirements are adapted iteratively or the
architecture is altered, the testability decreases. However, what is
often lacking is a root cause analysis of testability degradations and
the introduction of improvement measures during the development
of a software. In order to introduce agile practices in the rigid
strategy of the V-model good testability of software artifacts is
vital. So, testability is also the bridgehead towards agility. In this
paper we report on a case study where we measure and improve
testability based on the Goal Question Metric Approach.

CCS CONCEPTS
• Software and its engineering → Software testing and
debugging;

KEYWORDS
System testing; requirements-based testing; testability;
complexity; requirements quality; traceability; software quality;
empirical study.

*Produces the permission block, and copyright information
†The full version of the author’s guide is available as acmart.pdf document
1It is a datatype.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
RET’18, June 2, Gothenburg, Sweden
© 2016 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.1145/123_4

1 INTRODUCTION
Requirements-based testing has been recognized as the key to

aligning business value and risks in industry. Testing of systems
in the social insurance domain follows the V-model. The test
cases are developed from the artifacts of the requirements
specification. For instance, in system testing use-case
descriptions, business rules and a specification of the user
interface are used. Because of the long duration of projects and
frequent changes of the requirements test cases have to be
changed. In order to introduce agile practices in the rigid strategy
of the V-model good testability of software artifacts has to be in
place.

In this paper, we report about a case study for applying a
methodology to manage testability in large scale projects taking
frequent requirement changes into account. Based on the analysis
of complexity, release planning, effort, time, defect data and
experience, we performed a retrospective analysis and show how
early investments in testability can improve later results.
Improvements are feasible in terms of (1) reduction of complexity
of requirements artifacts, (2) balancing of development and test
effort (3) better final quality.

The paper is organized in the following way. Section 2
describes the terms and the background on testability. Section 3
describes the study design. Section 4 presents the background and
the research questions. Section 5 presents the cases and its
assessment. Section 6 covers the metrics and the evaluation of the
cases. Section 7 reports the results. Section 8 closes with
conclusion and future work.

2 BACKGROUND AND RELATED WORK

2.1 Testability
Software testability [1] is the degree to which a software

artifact supports testing. If the testability of the software is high,
then findings faults in the system by means of testing is easier. A
lower degree of testability results in increased test effort [8]. In
Figure 1 the relationship between testability and complexity is
presented. The complexity and quality of the software

RET’18, June 2, Gothenburg, Sweden A.Beer, M.Felderer

2

requirements specification (SRS) has an impact on the effort of
the design of test cases. If the complexity of the SRS is high, the
testability and the maintainability of test cases are low.
Traceability between the requirements artefacts for instance
requirements, use cases and test cases have to be in place in order
to monitor the status and progress of the project. For a good
maintainability of test cases testers have to understand the
relationship between the different artifacts and the impact of a
change for instance of legacy requirements.

Figure 1: Testability of software systems

2.2 Complexity
A system is classified as complex, if its design is unsuitable

for the application of exhaustive simulation and test, and therefore
its behavior cannot be verified by exhaustive testing [5]. The
IEEE Standard Computer Dictionary defines complexity as the
degree to which a system or component has a design or
implementation that is difficult to understand and verify [6]. This
phrase suggests that complexity is relative to the observer. That
means for example that a skilled analyst would analyze and design
a well-structured system. Uncontrolled complexity in software
may have the consequence of higher cost, less rigorous testing or
reduced performance (see also NASA report [7]).

Egyed [14] lists categories of complexities, which have to be
taken into account, when requirements are changed:
• Many-to-many mappings for instance requirements to design

elements.
• Incompleteness and inconsistencies
• Different stakeholders in charge of different software artifacts
• Increasingly rapid change of pace
• Non-linear increase in the number of software artifacts during

the course of the SW-life cycle (n2 complexity).
Kan [9] presents complexity metrics in order to provide clues

for software engineers in order to improve the quality of their
work. Cyclomatic complexity (McCabe 1976) was designed in
order to indicate program testability and maintainability. If an
organization can establish a significant correlation between
complexity and defect level, then the McCabe index can be useful
to help to:
• identify complex parts of code needing detailed inspection
• identify non-complex parts likely to have a low defect rate
• estimate programming and testing effort.

Structural metrics, “Fan-in” and “Fan-out” try to take into
account the interactions between modules in a system. Modules
that have a large “Fan-in” and “Fan-out” indicate a poor design.

Henry and Selig [9] defined an information flow metric,
combining a module complexity metrics with the structural
complexity. Card and Glass [9] developed a system complexity
model, which is a sum of structural (inter-module) complexity and
overall data (intra-module) complexity. They found, that the
system complexity measure was significantly correlated with a
subjective quality assessment by a development manager and with
development error rate. They provide also guidelines to achieve a
low complexity design. The high correlation between module
changes and enhancements illustrate the fact that the more
changes, the more chances for injecting defects. Small changes
are especially error-prone. Kan [9] concludes, that the key to
achieving quality is to reduce the complexity of software design
and implementation in a given problem domain.

2.3 Reliability
Deficiencies in the testability of requirements or components

influence the reliability of a product. Grottke and Dussa-Zieger
[10] relates test case coverage and the number of failures
experienced. One goal of the project was to develop a SW growth
reliability model.

FMEA (Failure Mode and Effect Analysis) is a bottom-up
analysis to identify potential failure modes with its causes. FMEA
especially takes the architecture and the complexity of
components into account. In software failure mode and effect
analysis (SFMEA) the complexity is taken into account to assess a
Risk-Priority Number (RPN) and to define the test strength [13].

2.4 Technical debt
The technical debt approach fosters the recognition and

mitigation of deficiencies of the software development process.
Alves et alt. [11] identified the following forms of technical

debt:
• Architectural debt: high complexity of the overall system

architecture.
• Defect debt: for instance defects not fixed, for lack of

resources or low prioritization.
• Design debt; code that violates good design practices.
• Requirements debt: for instance bad testability of

requirements
• Test automation debt: for instance bad testability of the

system under test

2.5 Goal-Question-Metric (GQM)
To improve the software development process improvement

goals have to be defined. These improvement goals should
support business objectives and take the actual status of ongoing
projects into account. The Goal Question Metric method of Basili
[17] and van Solingen [20] provide an efficient frame work for the
improvement of development and testing activities and its
approval for instance by a project manager.

The GQM method contains the phases planning, definition,
data collection and interpretation. The definition phase identifies a
goal for instance the improvement of testability, questions related
metrics and assessments. During the data collection phase
collection forms for instance EXCEL templates are defined and

Magnetic Normal Modes of Bi-Component Permalloy Structures WOODSTOCK’97, July 2016, El Paso, Texas USA

 3

project data for instance of the defect tracking tool are filled in.
During the interpretation phase the measurements are used to
answer the stated questions. These answers are again used to see if
the stated goals for instance the improvement of the release
quality are achieved.

The technical debt metaphor fosters an analysis of the reasons
of the problems for instance the decrease of testability
encountered from release to release. GQM is a powerful method
to measure and mitigate technical debt.

3 STUDY DESIGN
This section presents the design of the study. The core content of
our research is to investigate the effects of software testability
with special focus on requirements based testing from a
retrospective perspective. We evaluate two projects quantitatively
and qualitatively and document the lessons learned.

Figure 2: Design of the study

Step 1: We present the industrial context taking testability
problems into account.

Step 2: We present the selected projects of a social insurance
institution, which are assessed in the next step.

Step 3: Testability degradations are observed in the mentioned
cases. We assess the reasons for bad testability.

Step 4: We define metrics to monitor the test process and
perform a retrospective evaluation of two projects,
applying the GQM (Goal Question Metric).

Step 5: We discuss the results and improvement measures in
order to enhance testability and reduce complexity of
software artifacts.

4 INDUSTRIAL CONTEXT: STEP 1
For practitioners in industry good testability of software

artifacts is a key issue in order to deliver applications of high
quality in time and budget. In the studied cases, testability is
influenced by a growing complexity of the software artifacts for
example by change requests, new interfaces, platform upgrades
etc. In the case study presented by Felderer and Ramler [15] one
of the major complexity drivers were additional modules
introducing further inter-modules dependencies. Jungmayr [16]
presents an approach to define metrics of software dependencies,
ACD (Average Component Dependency) taking the extent of the
influence of the dependees in software design into account.

The selected cases were analyzed in respect to find reasons of
bad testability and their improvement by applying GQM.

 5 SELECTION AND ASSESSMENT OF
CASES: STEP 2 and 3.

Step 2 –Selection and presentation of cases
In this section, the cases selected for this study are presented.
Case A:
• A new complex system for the management of

subscriptions of insurants connected with software
components of different institutions of the government,
companies and the bank are under development.

• Frequent requirements changes during development have
an impact on testability

• Development of the software lasts about 5 years and the
total effort is about 10.000 person days.

• Complex performance requirements
• Synchronization with release plans of coupled systems.
The degradation of testability is recognized as a key problem

when progressing in the iterative development.

Case C:
• It is a core application dealing with charging of money

obligations of insurants and the healthcare institution
• Analysts created requirements and component of good

testability at the start of the project.
• New interfaces to external components were added

during development.

Attributes Case A Case C
Goal Management of

subscription of
social insurants.

Automation of business
of social insurance.

Duration of project
[year]

4 7

Number iterations 10 4
Number of releases 25 8
Number of features 65 20
Number of req. 370 80
Iteration 3 Test effort
plan [PD]

217 215

Percentage of test
effort to development
effort

40% 30%

% of manual TCs to be
automated

50% 50%

Figure 3: Description of Cases

Step 3 – Assessment of factors of bad testability in
the social insurance institution

The factors effecting testability encountered in projects of a
social insurance institution, we used the testability fishbone
visualization of Binder [19] and transformed it in a mind map
(Figure 4). We will focus rather on process issues, than on
technical problems.

RET’18, June 2, Gothenburg, Sweden A.Beer, M.Felderer

4

Figure 4: Testability factors in SW-projects

1-Test suite: The test oracle is deduced from the requirement
specification. Traceability should be in place in order to adapt test
cases when requirements are altered. Good testability is a
prerequisite for an efficient design and execution of test cases.

2-Test tools: In system testing tools should support test suite
management, test case development and reporting. To embrace
changeability, tools for analysis and testing should be tightly
coupled

3-Test process: The underlying model of the test process is the
V-model. The effort and duration of verification and validation
phases lead to iterations of 3-4 months each. The amount of
detected bugs influences the degree of testability. Metrics to
monitor the test process are missing or difficult to evaluate. High
effort of maintenance of automated test diminishes return of
investment of automation.

4-Representations: Usefulness and testability of
representations is a critical factor of test-case design. In our case
natural language and semi-formal representations in UML are
used. The specifications should contain relevant information for
system testers on domain level as well as detailed technical
descriptions for developers.

5-Implementation: The system architecture can be too
complex: Structural (Fan-in and fan-out) and system complexity
(inter-module and overall data complexity) are not taken into
account. The detectability and localization of faults and the effect
of a failure may be difficult. Permanent performance issues may
hinder the development and the execution of automated regression
tests of the iterations.

6 EVALUATION: STEP 4: QUANTITATIVE
AND QUALITATIVE EVALUATION OF
CASES
To prevent degradation of testability during the development

cycle we need a framework and metrics. We apply the goal-
question-metric (GQM) approach of Basili [17] and van Solingen
[20]. First goals, questions and metrics are defined. Measurement
data are collected and questions are answered in order to improve
the efficiency of testing.

6.1 Planning phase: Definition of goals, questions
and metrics

The primary goal for the test management are to keep testing
efficient, to reduce the time needed for testing and to improve the
quality achieved by testing. This goal can be refined to more
specific goals in order to improve testability:

G1. Requirement artifacts should be testable and support the
viewpoint of developers and testers.

G2: The quality of the releases or iterations should continually
improve.

G3: Change requests should have a low impact on architecture
and test cases.

G4: The effort of localization, correction and retest of
software defects should be minimized.

G5: The ROI of test automation should increase during the
testing of releases.

6.1 Planning phase: Definition of goals,
questions and metrics

G1. Requirement artifacts should be testable and
support the viewpoint of developers and testers.

Q1: What is the testability and complexity of the requirements
to be tested?

M1.1: Complexity of features and use cases
M1.2: Degree of testability
M1.3: Categories of requirement anomalies, i.e. the

requirement anomalies detected by a review

G2: The quality of the releases or iterations should

continually improve
How can we assess the quality of releases and the efficiency

of test results?
M1.1 Test results and report
M1.2- Defect trend analysis.

G3: Change requests should have a low impact on

architecture and test cases.
Q1: What are the consequences of change requests to testing?

To which extent we have to take the dependee components into
account?

M1.1 Number of regression test cases
M1.2- Test effort

G4: The effort of localization, correction and retest

of software defects should be minimized.

Q1: How can we assess the testability of the architecture.

M1.1 Testability of architecture and average component
dependency

M2.1 Effort to analyze, fix and retest defects.

G5: The ROI of test automation should increase
during the testing of releases

Q1: How can we measure the degree of automation of test
cases in order to reduce the time of regression tests?

M1.1 Number and percentage of automated test cases.

6.2 Interpretation.
The consultant is a member of the test management group the

social insurance institution and has access to the project data for
instance project plans, effort estimations, minutes of meetings,
defect tracking etc. Questions relevant to the requirements,
development and test were discussed with the stakeholders. The

Magnetic Normal Modes of Bi-Component Permalloy Structures WOODSTOCK’97, July 2016, El Paso, Texas USA

 5

data were collected in spreadsheets and checked by the test
manager and the leading analyst. Goal attainment, answers and
measurement are evaluated in cases A and C. In order to compare
the testability of case A with case C we will focus on iteration 3 of
these cases. The functionality of Case A and case C has to be
compatible and both iterations are the final before shipment.

The goal of the measurement was to understand root causes of
the increase of testability problems from iteration to iteration and
to find remedies in order to meet the deadline of shipment of the
applications. A second goal was to define a measurement program
for future projects.

We will now present the application the GQM method to the
cases.

G1. Requirement artifacts should be testable and support
the viewpoint of developers and testers.

Q1: What is the testability and complexity of the requirements
to be tested?

M1.1: Complexity of features and use cases

The degree of complexity is assessed by the analyst and the
system architect. The skill of teams and the testability of features
or requirements are taken into account. The effort of analysis,
development, architecture and test can be calculated more
precisely by taking these influence factors into account. The
relation of the factors assigned to analysis, development etc. as
depicted in Figure 5 are heuristic.

Figure 5: Case C: Calculation of complexity and effort of
development

In case A the complexity of requirements artifacts is assessed
by assigning attributes (low and high) only.

Complexity measures allow a realistic calculation of the effort
of analysis, development, architecture and test. This conclusion
was based on the experience in case C.

M1.2: Degree of testability

The number of TC’s not executed and the percentage of
automation, indicate the severity of testability problems
encountered. As depicted in Figure 6 only 17% of TCs could be
automated in iteration 3. In case C about 37% of TCs where
automated. Feedback of domain experts, developers and testers of

case C indicated also, that the requirement specification is of good
quality i.e. testability and understandability. [3]

Figure 6: Degree of testability in case A and C

In case A the amount of change requests cumulated in
iteration 3. It showed the importance to build in testability already
in the first iteration.

M1.3: Categories of requirement anomalies

Case A: The test management assessed the quality of
requirement specification of iteration one and detected the
categories of defects depicted in Figure 7. All testability issues
had a high impact on the design of test cases.

Testability
issue

Description Example

Completeness Use-case
descriptions

Links in use case
description are missing.

Defects Business rules Rules contradicting

Traceability Mapping Coverage of business
processes

Comprehen-
sibility

Natural
language

Focus on the developer
point of view, too technical
for domain experts.

Right level of
detail

For
developers
and tester

Sorting rules of items are
not detailed enough to
design test cases.

Figure 7: Categories of anomalies of SRS detected by reviewers in
iteration 1

A great effort is invested in the review of requirements. The
example of case A is depicted in the following table. The
anomalies detected by the different reviewers. Major and critical
anomalies detected, were testability problems from the viewpoint
of testers (Figure 8). Testability issues detected by testers were
regarded as problems to design good test cases. [3]

Release Passed Failed
Not
exec.

Number
of manual
and
automat.
TCs

Number
of
automat.
TCs

%
automated

Case-C Rel. V 3.8.4 1.424 111 109 1.644 607 36,92%
Case A Rel. V 0.8.0 1.909 292 393 2.594 441 17,00%
Case-C Rel. V 3.8.5 880 45 706 1.631 603 36,97%
Case-A Rel. V 0.9.0 1.390 178 947 2.515 457 18,17%

Case A Review

Iteration
Number of
Reviewer

Number of
anomalies

Category 2
(major)
oder 3
(Critical)

2c 11 269 4
3b 11 557 2
3d 7 641 10
3 10 219 8

RET’18, June 2, Gothenburg, Sweden A.Beer, M.Felderer

6

Figure 8: Number of anomalies of SRS detected by reviewers

G2: The quality of the releases or iterations should
continually improve

Q1: How can we assess the quality of releases?

M1.1 Test results

Case A: In Rel. 0.6.0 1782 test cases were executed, about 20
% failed, because of requirement changes of an external
component and schedule 30% of the planned TCs couldn’t be
executed. In Rel. 0.7.5 the database had to be redesigned and also
the test cases had to be changed. Insufficient performance and
interface defects were the reason that 30% of the detected defects
had been “critical”. This result indicates, that the more changes
the more defects will occur [9].

In Rel 0.8.0: despite of “feature freeze” the number of open
bugs still increased, because the localization of defects was
difficult and the testability was bad. The development resources
were insufficient to correct the amount of bugs in time.

Figure 9: Case A: Result of system tests of releases

Case A: Figure 9 depicts the test progress starting with the
first iteration. The number of not executed TCs increased in the
last iteration before shipment because of still latent testability
issues.

M1.2- Defect trend analysis.

The defect analysis of case A shows that the total amount of
open bugs (not fixed or not retested) still increased when testing
iteration 3. The number of open bugs, i.e. not fixed or not retested,
is still increasing.

G3: Change requests should have a low impact on
architecture and test cases.

Q1: What are the consequences of change requests to testing?
To which extent we have to take the dependee components into
account?

One major challenge is the synchronization of the release
plans of case A and case C during the last iteration before
shipment. For example had the backlog of not corrected defects
and performance problems an impact on testing in case C.

M1.1 Number of regression test cases

Testability problems cumulated in Case A Rel. V 0.8.0,
because of the following issues:

• Complexity of the requirement specification increased
compared to iteration 1 and 2.

• Nearly the complete set of test cases had to be changed
because of numerous change requests

• 28% of TCs could not be retested because of testability
problems after bug fixing

• 35% of test cases failed because of testability problems

Figure 10: Defect trend analysis of Case A

Figure 11: Percentage of TCs not executed in Case A Rel. V
0.8.0

M1.2- Test effort

The test effort is estimated taking the testability of the
requirements into account and differs from project to project. For
the design of test cases in case A 1.5 hours in Case C 1.25 hours
per test case are estimated. The execution of a manual test case is
calculated with 0.5 hours per test case. The test automation is

Test case type
Number of
designed TC's

Nbr. of TCs
executed in
Rel. 0.8.0

TCs not
executed %

Regression tests 400 887 6,00%
Test data initialisation 190 557 13,50%
New features 405 346 29,48%
Retest of defects 100 363 28,10%
Automated tests 150 441 9,26%
Update of TCs 640
Total 1885 2594

Magnetic Normal Modes of Bi-Component Permalloy Structures WOODSTOCK’97, July 2016, El Paso, Texas USA

 7

performed by a separate team and the effort is calculated
separately.

G4: The effort of localization, correction and retest of

software defects should be minimized.

Q1: How can we assess the testability of the architecture.

M1.1 Testability of architecture and average component
dependency

In case C the architecture took potential changes of interfaces
or the connection to new components into account. Component
dependencies are low.

Figure 12: Case C. testable architecture

M2.1 Effort to analyze, fix and retest one defect

Case A: The localization, correction and test of defects is
labor intensive and takes according to the experience of the test
manager about one day per defect. The main reasons are: bad
testability of the software under test, high complexity of
architecture (many interconnected components) and the complex
relations between distributed data sets, which are changed from
iteration to iteration.

G5: The ROI of test automation should increase during
the testing of releases

Q1: How can we measure the degree of automation of test
cases in order to reduce the time of regression tests?

M1.1 Number and percentage of automated test cases.

Case A: The goal to automate 50% of the test cases could not
be implemented in case A, because of the frequent changes of the
use cases and masks. Only 17% of the planned automated test
cases were automated in iteration 3.

Figure 13: Percentage of executed automated TCs in Case A

6.2 Data collection and threats of validity..
The validity of this conclusion concerns data collection and

the reliability of the measurements, any of which might affect the
ability to draw the right conclusion. The source of the data are test
effort estimations, review results, minutes of meetings, protocols
of steering committee, test reports, the test case design and
execution documented in a test management tool etc.. The data of
the study, are collected in spread sheets as well as a questionnaire
and were checked by the authors and the test manager of the
social insurance institution.

7 EVALUATION: STEP 5: DISCUSSION AND
LESSONS LEARNED
In the interpretation phase we will draw conclusions regarding

the results of the study. The results are discussed in feedback
sessions with the test manager. Presentation slides are prepared to
focus on the main findings. The study yields that the test manager
should be involved during the analysis and design phase with the
goal to reduce complexity and enhance testability to mitigate not
foreseen changes in implementation and testing of coming
change. Metrics should be used to monitor and foster a continuous
improvement of the procedures of development and testing. We
will now discuss improvement measures taking the interpretation
of the results of the application of the GQM into account:

 (1) Reduction of complexity and enhancement of testability:
Requirements or platforms are changed, new interfaces are added
in an iterative development process. As a consequence, the
complexity of the software artifacts increases and testability is
worsening. In black-box testing the observability of subsystems
has to be fulfilled in order to implement effective test cases.
However, in case A subsystem cannot be accessed to verify test
results. In case A the relatively simple top-level requirements hide
the immense complexity introduced by legacy and dependency on
components of a networked system. Therefore analysts should
follow guidelines in order to mitigate complexity and focus on
testability, For example in case C, analysts added examples of
abstract test cases are added to business rules and enhanced its
testability by sign pointing changes with colors. In case C the
testability improvements, introduced by the analyst early in the
analysis phase are accepted by the domain expert, testers and the
project management. The comparison of the percentage of the

Iteration Case A rel.

Total
nbr. of
TCs

%
automa-
ted

Version 0.1.0 420
Version 0.1.1 420
Version 0.2.0 868
Version 0.3.0 1.489
Version 0.4.0 2.117 6,38
Version 0.5.0 1.779 4,72
Version 0.6.0c 2.493 8,46
Version 0.7.0 2.258
Version 0.7.5 2.154
Case A Version 0.8.0 2.594 17,00
Case A Version 0.9.0 3.020 16,663

2

1

no

no

RET’18, June 2, Gothenburg, Sweden A.Beer, M.Felderer

8

automatic regression tests of adjacent releases of case A and case
C, depicted in Figure 6, indicate a better testability in case C. Due
to testability problems for instance delays in test case design and
defects not corrected, the amount of untested test cases in case A,
as depicted in Figure 9, are high.
(3) Working packages of testers
Working packages assigned to testers should be elaborated in time
and budget. However in case A with testers of skills [2]
comparable to case C the completion of working packages are
delayed by lack of understandability of requirements and
observability of the software under test. In case A the effort of
fixing and retesting of defects has been one day per defect,
because the localization of a fault needed a frequent
communication between developer and tester. For the estimation
of effort and duration of working packages the degree of
testability has to be taken into account. An assessment of the
complexity, as depicted in Figure 5 improves the definition of
WPs.
(4) Frequent change requests
Change requests may have an impact on a great amount of test
cases. Therefore traceability from a test case to the requirement
artifacts has to be in place. Tools of analysts and test management
should be tightly coupled. Alternate release plans should be taken
into account [18].
(5) Efficient test management
Metrics presented in chapter VI should be taken into account to
monitor a test project. Bug fixing and retesting should have
priority.
(6) Shorter iteration and release cycles
In order to get an earlier feedback the current duration of the
implementation of a release of about 6 to 12 months should be
reduced.
(7) Good testability of the system architecture
The long duration of projects and the networking of different
systems is a challenge for the system architect. Testability of
architecture, components and data has to be taken into account at
the start of the project. The analyst of case C has implemented a
testable architecture taking the coupling of new components into
account.

8 CONCLUSIONS
To sum up, our study indicates that by applying the GQM

method specific quality attributes can be monitored in order to
create a framework for the improvement of testability. Experience
in two large scale projects under development shows: Testability
is the key for an efficient development of a software product. In
future, we will perform further empirical studies and refine our
framework for measuring testability based on the Goal Question
Metric approach.

ACKNOWLEDGMENTS
The paper was partly funded by the Knowledge Foundation
(KKS) of Sweden through the project 20130085: Testing of
Critical System Characteristics (TOCSYC).

REFERENCES
[1] ISTQB. “Standard glossary of terms used in software testing”, Version 3.1,

Internat. Software Testing Qualifications Board, Glossary Working Party,
2016.

[2] A. Beer, R. Ramler, “The role of experience in software testing practice”,

Proceedings of the 34th Euromicro Conf. Softw. Eng. and Advanced
Applications: 258-265, IEEE 2008.

[3] M. Felderer, A. Beer, B.Peischl, “On the role of defect taxonomy types for
testing requirements: Results of a Controlled Experiment”, Proceedings of the
40th Euromicro Conf. Softw. Eng. and Advanced Applications, pp. 377-384,
IEEE 2014.

[4] H. Femmer et al., “Rapid requirements checks with requirement smells”,
Journal of Systems and Software, Elsevier 2017.

[5] Defense Standard 00-54, Requirements for safety related electronic hardware in
defense equipment, UK Ministry of Defense, 1999.

[6] IEEE Standard Computer Dictionary, 1990.
[7] Dvorak D.L., Eds., NASA study on flight software complexity, Jet Propulsion

Laboratory, California Institute of Technology, 2001.
[8] Wikipedia, retrieval Dec.28, 2018
[9] Kan St., Metrics and models in software quality engineering, Addison-Wesley,

pp. 311-330, 2006.
[10] Grottke M., Dussa-Zieger K.; Prediction of software failures based on

systematic testing, EuroSTAR, Stockholm, 2001.
[11] Alves,N. S. R., Ribeiro L.F., Caires V., Mendes T. S., Spnola R. O., Towards

an ontology of terms of technical debt. Proc. IEEE 6th Int. Workshop on
Managing Technical Debt, pp 1-7, 2014.

[12] IEEE Standard Computer Dictionary, 1990.
[13] Sulaman M.S., et al, Comparison of the FMEA and STPA safety analysis

methods – a case study, Softw. Quality Journal, Springer, 2017.
[14] Egyed A.; Tailoring Software Traceability to value-based needs. In Biffl St. et

alt. (Eds.): Value-based software engineering, pp.287-308. Springer, 2010.
[15] Felderer M., Ramler R., A multiple case-study on risk-based testing in industry,

Int. Journal on Software Tools for Technology Transfer 16(5), Springer pp 609-
625, 2014

[16] Jungmayr S., Testability measurement and software dependencies, Proceedings
of the 12th International Workshop on Software Measurement. Vol. 25. No. 9.
2002

[17] Basili V.R., Rombach H.D., “The TAME project: Towards improvement-
oriented software environments”, IEEE Trans. On SW Engineering, vol.SE-11,
pp 758-773, 1988.

[18] Felderer M., Beer A., Ho J., Ruhe G., Industrial evaluation oft he impact of
quality driven release planning, ESEM ’14, Torino, Italy, 2014

[19] Binder R.V., Design for testability in object-oriented systems, Comm. Of the
ACM, Sept. 1994, Vol.37, No.9, pp 89-101, 1994.

[20] Van Solingen R, Berghout E., The goal/question metric method: a practical
guide for quality improvement of software development; McGraw Hill,
London, 1999.

