REQCAP: Hierarchical Requirements Modeling and
Test Generation for Industrial Control Systems

Ali Almohammad®*, Jodo F. Ferreiraﬂ, Alexandra Mendest and Phil White*
*Applied Integration UK Ltd, Stokesley, TS9 5JZ, UK
fSchool of Computing, Teesside University, Middlesbrough, TS1 3BX, UK
{HASLab/INESC TEC, Universidade do Minho, 4704-553 Braga, Portugal

Abstract—This paper presents REQCAP, an implementation
of a new method that articulates hierarchical requirements
modeling and test generation to assist in the process of capturing
requirements for PLC-based control systems. REQCAP is based
on a semi-formal graphical model that supports hierarchical
modeling, thus enabling compositional specifications. The tool
supports automated generation of test cases according to different
coverage criteria. It can also import requirements directly from
REQIF files and automatically generate Sequential Function
Charts (SFCs).

We use a real-world case study to show how REQCAP can
be used to model realistic system requirements. We show how
the automated generation of SFCs and test cases can support
engineers (and clients) in visualizing and reviewing requirements.
Moreover, all the tests listed in the original test document of
the case study are also generated automatically by REQCAP,
demonstrating that the tool can be used to effectively capture
requirements and generate valid and useful test cases.

I. INTRODUCTION

Programmable logic controllers (PLCs) are widely used in
safety-critical processes, such as gas monitoring and ventila-
tion control in mines [19], administration and treatment of
municipal and industrial wastewater [10], and nuclear power
plants [4], [15]. The reliability of PLC-based control systems
is therefore extremely important. However, they can be very
complex, making it difficult to precisely capture all their safety
requirements and ensure their reliability.

A model commonly used in the development of PLC-based
control systems is the V-model, an extension of the waterfall
model where validation, verification, and testing are planned
and performed in parallel with requirement gathering, design,
and implementation phases (respectively). The V-model is
simple, easy to use, and has the advantage of including some
validation before coding takes place. However, if any errors are
found during the testing phase, then the test documents along
with requirement documents have to be updated. Depending
on the complexity of the project, and given that in practice the
modeling is often done manually, changes can be expensive.
Moreover, a problem that arises in practice is that different
engineers often use different notations and methods to capture
requirements. This hinders reusability and compositionality,
making it more difficult and expensive to develop large-scale
projects.

This work has been supported by Innovate UK funding as part of the
Knowledge Transfer Partnership no. 9828.

Model-based design, whereby a single model of the en-
tire system is used throughout the development process, is
an approach that can help alleviate some of the problems
mentioned above. For example, it provides a common design
environment and framework for communication across project
teams and integrates testing with design, allowing continuous
detection and correction of errors. The model is an executable
specification which can be used to explore alternative designs
and evaluate system performance, thus yielding a refined,
optimized, and fully tested software.

In this paper, we present REQCAP, a model-based require-
ment modeling tool that implements a new method that can
be used to effectively capture requirements of PLC-based
systems. The method emphasizes the procedural nature of
control systems, allowing a simple, precise, and uniform
approach to capture systems’ requirements. REQCAP supports
automated generation of test cases according to different code
coverage criteria. It can also import requirements directly
from REQIF files [23] and it is capable of automatically
generating Sequential Function Charts (SFCs). We also outline
some challenges that we encounter in practice. We believe
that by reporting our experience in developing this tool, we
are providing valuable information to the community. This
work was developed in an industrial context and captures best
practice gathered by years of experience delivering real PLC-
based projects. It puts together some features that facilitate the
task of requirements engineers. Some of these features include:

e a uniform graphical semi-formal model to capture re-
quirements, emphasizing procedural modeling and pro-
moting model reusability;

« different levels of abstraction, supported by the hierarchi-
cal structure of the models;

¢ automatic test generation according to different coverage
criteria;

o automatic generation of Sequential Function Charts
(SFCs).

To the best of our knowledge, no other tool allows the
combination of all these features.

We use a real-world case study to show how REQCAP can
be used to model realistic system requirements. We discuss
how the automated generation of SFCs and test cases can
support engineers (and clients) in visualizing and reviewing
requirements. Moreover, all the tests listed in the original test

document of the case study are also generated automatically by
REQCAP, demonstrating that the tool can be used to effectively
capture requirements and generate valid and useful test cases.

This paper is structured as follows. In Section II, we explain
the context in which the tool was developed and outline some
of the challenges involved in the development of PLC-based
systems. We then describe the approach and tool developed
in Section III. In Section IV, we show that REQCAP can
be used to model realistic system requirements by using a
real-world case study. After presenting and discussing some
relevant related work in Section V, we conclude the paper and
set some future directions in Section VI.

II. BACKGROUND AND CHALLENGES

The work described in this paper is developed in an in-
dustrial context (at Applied Integration UK) and captures best
practice gathered by years of experience delivering projects
that depend on programmable logic controllers (PLCs). Ap-
plied Integration UK are approved integrators for all the lead-
ing PLC manufacturers, delivering systems applicable across
the oil, gas, petrochemical, and nuclear energy industries. The
company provides guidance on how to implement PLC Safety
Systems, the use of safety functions and compliance with
industry standards, as well as the total integration of systems.

PLCs are computer control systems that have a cyclic
execution model: they continuously monitor the state of input
devices and make decisions based upon a custom program
to control the state of output devices. There are four basic
steps in the operation of all PLCs: (1) Human and sensor
input is collected (Input Scan), (2) some user-created program
logic is executed (Program Scan), (3) results are passed to
the environment (Output Scan), and (4) some housekeeping
is performed, such as communication with programming ter-
minals and internal diagnostics (Housekeeping). These steps
continually take place in a repeating loop.

PLCs can be programmed using different programming lan-
guages. The International Electrotechnical Commission (IEC)
61131-3 standard [5], [16] was introduced in the 1990s in an
attempt to standardize programming languages for industrial
automation. The standard recommends the specification of the
syntax and semantics of a unified suite of programming lan-
guages, including the overall software model and a structuring
language. The programming languages are: Ladder Diagram
(LD), Function Block Diagram (FBD), Structured Text (ST),
Instruction List (IL) and Sequential Function Chart (SFC).

In terms of development methodologies, PLC-based control
systems are usually developed following the V-model. As
explained in the previous section, the V-model is an extension
of the waterfall model where validation, verification, and
testing are planned and performed in parallel with requirement
gathering, design, and implementation phases (respectively).
The V-model is simple, easy to use, and fits well with the
development of PLC-based control systems because it empha-
sizes validation. Indeed, an important task in the development
of PLC-based control systems is the validation of the program
logic, particularly in safety-critical systems. Test documents

are normally written during the design phase. These tend to
be long, detailed, and manually produced by (requirements)
engineers. Before the implementation phase starts, the test
documents are normally used (together with other design
documents) to clarify requirements with clients. They are
also used to inform the implementation phase. Testing of the
implementation is often done at the end of the project lifecy-
cle, using simulation techniques, and it is usually performed
manually by a testing engineer.

The lack of automation in validation is a major factor in
the cost of projects. Producing the test documents, where all
test cases are listed, takes a long time. Moreover, it is often
the case that standard code coverage criteria are not used by
engineers to produce the set of test cases.

The points above show that there are some challenges
involved in the design of PLC-based control systems. Based
on the experience of engineers working at Applied Integration
UK, on related research literature (e.g. [18], [25]), and given
the context of this project, the following challenges were
identified as the most relevant:

1) Lack of standard modeling and development approach:
engineers often use different, improper, and/or mixed-
granularity abstractions, leading to a lack of consistency,
performance, and progress measures across projects;

2) High cost of verification and validation and lack of code-
coverage consistency across projects;

3) Lack of automation, both in terms of generation of
test cases, and in terms of generation of documentation
and other important design artefacts (e.g. SFCs and
flowcharts).

III. FROM REQUIREMENTS TO TESTING

In this section we describe some important aspects of
REQCAP, focusing on the challenges outlined in the previous
section. The development of this work was informed by a
focus group that consists of seven engineers: two directors
with a background on the development of complex control
systems, three senior control engineers, one junior control
engineer who has experience with software testing, and a
software engineer. The project was also accompanied by an
academic team from Teesside University who specialise in
formal methods in software engineering.

A. Modeling

There are two important points that emerged from Applied
Integration’s experience in delivering PLC-based control sys-
tem projects and that were discussed and confirmed in the
focus group meetings. The first is that the modeling formalism
should highlight the procedural nature of control systems,
clearly capturing the dependencies between components. This
idea is not new: there is related work on procedural modeling
based on finite state machines, on Petri nets, and on procedural
domain-specific languages [11], [9]. The second point is that it
should be possible for engineers to view the model at different
abstract levels. This idea follows existing practice at Applied

Automatically Generated

(SFC)

Dependency Graph E

Client/Engineer Feedback Loop\

Semi-Formal
Requirements

(Mml DCs and

CEMs)

Fm

Implementation
{ j Software
Test Engineer

a

Cause-Effect Matrix

Test Cases

/Booean Truth Tables Sequential Function Chart \

Fig. 1: In REQCAP, dependency charts (DCs) and cause-effect matrices (CEMs) are used to model systems. From these,
sequential function charts (SFCs) and test cases satisfying different coverage criteria are generated. The generated artefacts
can support engineers and clients visualizing and reviewing requirements.

Integration, but there is also literature supporting this (e.g.
[17D).

REQCAP supports these points by providing a graph-based
graphical language that captures dependencies between proce-
dural control entities. These entities can be refined as required,
allowing engineers to analyze the model at different abstract
levels. We call such graphs hierarchical dependency charts
(DCs). To formally specify these control entities, we use
cause-effect matrices (CEMs). These are described as follows.

a) Hierarchical dependency charts (DCs): The graphical
model consists of a root DC that describes the complete
process from a high-level perspective. Nodes in the root
DC usually represent high-level components that are further
refined in more specific DCs. In general, DCs consist of the
following elements:

o Start and End nodes: every DC represents a functional
unit, so REQCAP requires that the start and end points
are explicitly shown;

e High-level (blue) nodes: these nodes represent non-
atomic functional units, meaning that they are further
refined;

e Low-level (green) nodes: these nodes represent atomic
functional units and can be formally defined using cause-
effect matrices.

For example, Figure 1 depicts a DC with four high-level (blue)
nodes. The refinement of the node Low Level Ctrl into a DC
with only low-level (green) nodes is also shown. Both DCs
have Start and End nodes.

b) Cause-effect matrices (CEMs): High-level (blue)
nodes can be iteratively refined to a point where no further
refinement is possible or desirable (i.e. to a point where a

Causes Effects
T
X2 OR | Z:=True
y <15.5 AND
B = False

Fig. 2: Example of a cause-effect matrix

low-level (green) node is reached). At that point, the node can
be formally defined. In REQCAP, this is done by defining a
cause-effect matrix (CEM), which is a tabular representation
used to specify logically the relations between causes (inputs’
conditions) and effects (outputs’ conditions). This formalism
has been chosen because it is easy to understand and intuitive
to use. Moreover, it is widely used in industry. The CEM form
that we use in this work is a simplified form of the original
cause-effects graph, a popular formalism documented in the
literature [21], [22]. Our CEM form represents the logical
relation between causes and effects using a restricted form that
is very similar to disjunctive normal form (DNF) in Boolean
logic. The main effect(s) can be seen as a sum of products of
causes. For example:

= (A and (x>-195)) or ((y<15.5) and not B)

The tabular form of this example is depicted in Figure 2.
Figure 1 shows how CEMs are displayed in REQCAP.

B. SFC Generation

Although DCs and the associated cause-effect matrices
(CEMs) are created by domain experts (control engineers), the
simplicity of their notations and constructs make it possible
to communicate model requirements to the client at the early
stages of the project — even though clients are not expected

to be familiar with these. This communication with the client
allows requirements engineers to collect client feedback on
the model and identify any missing elements. Well-established
domain-specific languages, such as SFC [16], are expected
to be more familiar to clients than DCs. SFC is a graphical
language used for programming PLCs and, as mentioned in
the previous section, it is one of the five languages defined
by IEC 61131-3 standard [5]. SFCs can be used to describe
the sequential behaviour of control systems at the top level in
terms of states, all the possible state transitions, and transition
conditions. In REQCAP, we have implemented an algorithm
that generates an equivalent high-level SFC from DCs and
CEMs.

C. Test Case Generation

Test coverage [13] is a measure used to describe the
percentage of code (or model, in this context) that has been
exercised/visited when test cases run. REQCAP implements
four coverage criteria:

1) Decision Coverage (DC)

2) Condition Coverage (CC)

3) Modified Condition/Decision Coverage (MC/DC)
4) Multiple Condition Coverage (MCC)

These are extensively discussed in the literature, but to briefly
explain the differences between them, consider the decision (A
or B), where A and B are both conditions. In general, decisions
are made up from conditions combined by logical operators
(such as and, or, not). DC requires two test cases: one for a
true outcome and another for a false outcome of the decision.
CC requires that each condition in a decision takes on all
possible outcomes at least once, but does not require that the
decision takes on all possible outcomes at least once. MC/DC
requires that each condition is shown to independently affect
the outcome of the decision. Therefore, each condition in the
decision requires two test cases that: (R1) differ in the outcome
for that condition, (R2) have the same outcomes for all other
conditions, and (R3) produce true and false in the outcome
of the whole decision. For n conditions, MC/DC requires
between n+1 and 2n test cases. Finally, MCC requires that
all combinations of true and false for the conditions in the
decision are evaluated.

In REQCAP, the user can select specific test coverage
criteria (by default, MC/DC is used). Test cases are generated
in two steps: a) we generate full truth tables from CEMs;
b) we search the truth tables to find a set of tests (entries
in the table) that satisfy the required constraints (depending
on the coverage criteria selected). In order to achieve the first
step, we encode Boolean expressions as input of a SAT Solver
(we use Sat4] [14]) and we produce all possible solutions
for the expressions. The combination of all solutions forms
the truth table. Truth tables are stored in memory using a
Bitset representation for two reasons: first, it is compact,
requiring less space in memory (important for large truth table
of complex expressions); second, it allows the use of bitwise
operations that speed up the search for a specific pattern.

Test pair

| X1 | X2 | X3 |Z XT T X2 1 X3
1 0 0 0 0

2 0 0 1 0

3 0 1 0 0

4 0 1 1 0 8

5 1 0 0 0

6 1 0 1 0 8

7 1 1 0 0 8
8 1 1 1 1 4 6 7

Fig. 3: MC/DC test pairs for Z = XI and X2 and X3. The
condition X1 needs the two tests 4 and 8; X2 needs the tests
6 and 8; X3 needs the tests 7 and 8. The test set is {4,6,7,8}.

For the second step, we use a search method inspired by
the filtering mechanism used in CAN message broadcasting
[7]. The method requires configuring two objects (filter and
mask), each of which is a Bitset with the same size as the
Bitsets generated for the truth table. The mask is used to
determine which conditions are of interest and the filter is used
to define what outcomes we want to vary. More precisely, we
search for source entries in the truth table such that

source bitwise-AND mask = filter

For example, consider Figure 3 with the truth table of Z = X/
and X2 and X3. To find a pair of tests for condition X1 that
satisfy the requirements of MC/DC, we use the mask 1110
and the filters 0110 and 1110. Intuitively, the mask denotes
that the first 3 columns (X1, X2, and X3) are of interest; the
two filters differ in the first component to satisfy (R1).

D. Requirements and test cases tractability

REQIF (Requirements Interchange Format) [23] is a stan-
dard file format used to exchange requirements between
software tools from different vendors. REQCAP has been
implemented to enable users to import requirements directly
from REQIF files provided by the client using a requirement
management tool, such as IBM Rational DOORS [1]. Once
imported, the user can assign one requirement (or a group of
them) to the model elements (parent or child nodes) of DCs.
This enables us to demonstrate the traceability between the
original requirements and the generated test cases.

IV. EVALUATION

We used REQCAP to model part of an Oily Water Sewer
(OWS) System, a level control system that maintains the level
of a waste liquid in a sump tank using three discharging
pumps. This is a real-world system that was developed and
deployed by Applied Integration UK before REQCAP was
created. In this section we discuss some benefits that REQCAP
offers, when compared with the approach that was originally
used.

The system has been implemented using a programmable
logic controller (PLC) supporting 16 analogue inputs and
outputs (Al and AO), and 16 digital inputs and outputs (DI and
DO). The pumps can be controlled in three different modes
of operation: automatic, remote manual, and local manual. In
the automatic operation mode, the PLC monitors the level of

the oily water and controls the starting/stopping and the speed
of the pumps to maintain the level setpoint. In the remote
manual mode, the operator manually starts/stops the pumps
and sets the speed from a distributed control system (DCS)
console. Finally, in the local manual mode, the pumps can
be started/stopped from a local pushbutton station at a fixed
speed. Figure 4 depicts an overview of the OWS system.

In this paper we only discuss the modeling of the automatic
mode.

A. Modeling the automatic mode

The requirements related to the automatic mode of operation
are:

o When the level is below the “Pump Stop Level” all pumps
shall be stopped.

o When the “Pump Start Level” is reached, the duty pump
is started at its minimum speed. The PLC adjusts the
speed to maintain the “Level Control Setpoint”.

o If the pump reaches its “High Speed Start”, the next duty
pump is started and the PLC output is adjusted to split
the load between the two pumps.

o If the speed falls to the “High Speed Stop” setting, the
second pump is stopped.

o When the “Pump Stop Level” is reached, all pumps are
stopped.

o The PLC will initiate high and low level alarm beacons
local to the sump. This alarm will auto reset.

Following the approach described in the previous section,
we started by developing the procedural view of the system
using dependency charts (DCs). All low-level (green) nodes
were then specified using cause-effect matrices (CEMs). We
now show some extracts from our model, taken directly from
REQCAP. For simplicity, we show a version where only two
pumps are available.

a) Hierarchical dependency charts (DCs): Figure 5
shows four screenshots of REQCAP, each showing different
abstract levels from the same model. In Figure 5a, the main
window contains the root DC, which consists of the default
Start and End nodes (representing the start and end of the
automatic mode), and of a single high-level (blue) node repre-
senting the functional unit associated with the automatic mode

Oily-water Sump

el alart
(1800mm)

Fig. 4: Oily water sewer system overview

(Auto Level Ctrl). The left pane shows the Model Explorer with
an expanded tree view of the model: we can see that the node
Auto Level Ctrl is further decomposed into four high-level
(blue nodes). These four nodes, labelled High Level Ctrl, PID
Speed Ctrl, Low Level Ctrl, and Alarm-Trip Ctrl are shown
in Figure 5b. These are also further refined into more atomic
units: for example, the node High Level Ctrl is refined into
the DC shown in Figure 5c and the node Low Level Ctrl is
refined into the DC shown in Figure 5d.

b) Cause-effect matrices (CEMs): The DCs shown in
Figures 5c and 5d contain only low-level (green) nodes that
can be formally defined using CEMs. For example, we can
define the node Stop A and B shown in Figure 5d with the
cause-effect matrix shown in Figure 6. The matrix captures the
requirement “When the level is below the ‘Pump Stop Level’
all pumps shall be stopped.”, where the stop level is defined as
Level 7.

B. SFC Generation

SFC models can be generated automatically at any stage of
the system modeling. These can help control engineers and
clients in visualizing and reviewing the system, since it is a
well-established and popular domain-specific language. As an
example, we show in Figure 1 the SFC model that REQCAP
generated for the high-level control.

C. Test Case Generation

Test cases can be generated for the system (or part of
it) from the cause effect matrices describing child (green)
nodes. Users can adjust the number of the generated test cases
according to the four standard testing coverage criteria listed
in the previous section.

Figure 7 depicts the interface provided to select the testing
coverage criteria. Note that users can select different coverage
criteria for different transitions. The DC test coverage criteria
generates the minimum number of tests, whereas MCC gen-
erates the maximum number of tests. MC/DC is chosen by
default.

Table I shows some tests generated using REQCAP. The
tool generated most of the tests listed in the original test
document. However, using a first version of our model, tests
6, 7, 10, and 11 were not generated. We analyzed this issue
and we found that these tests were missing because the part
of the system describing the speed control behavior was not
modeled completely. After completing the model, all tests
were generated (see last column of the table). Additionally,
the tool generated more tests than previously available in the
original test document. This includes test cases that validate
the system behavior when the conditions are not fully met or
are invalid (rows 14 and 15 of Table I show two examples, but
there are many more). This type of testing is called negative
path testing. We have received very positive feedback from
the engineers in the focus group on the tool capability of
generating test cases covering both positive and negative paths,
because it increases their confidence in the reliability of the
systems they develop (note that, in practice, it is easier to miss
negative path tests).

(a) Root DC

(b) Overview of automatic mode

fsbansiesmi - Reqtan

 v|v |z =(AL 0w

(c) High-level control

(d) Low-level control

Fig. 5: Screenshots of REQCAP showing high-level views of the automatic mode model

|£ | Cause-Effect Matrix of Stop A and B ‘A‘

Causes

Tnput
iSump_Level

iPump_Running_A
iPump_Running_B

Trigger Cause description

<=Level 7
=TRUE
=TRUE

Effects

Action

'TRUE
'TRUE

Output
|oPump_stop_aA |
|oPump_Stop_8 |

Effect description

[Add Cause] [Add Effect | [Delete Cause/Effect |

Fig. 6: Cause-effect matrix associated with the node Stop A
and B in the low-level control (see Figure 5d)

D. Discussion

REQCAP puts together a set of features that support en-
gineers (and clients) in visualizing, reviewing, and reusing
requirements. First, the model-driven approach supported by
REQCAP pushes the user to establish a good understanding
of the system’s behavior before implementation. Second, the
DCs and all the artefacts generated by REQCAP can be shown
to clients to clarify requirements and remove ambiguities.
Feedback is immediate: if during a meeting with a client, a

change to the model is proposed, the DCs, SFCs, and test cases
can be immediately generated to provide different views on the
proposed changes. Third, the capacity to generate test cases
according to different coverage criteria introduces a pragmatic
approach to increase reliability. This feature is particularly
interesting in the context of safety-critical systems, where
often certain code coverage criteria have to be followed (e.g.
ISO 61508 may require MC/DC code coverage, depending on
the SIL level that needs to be achieved). The negative path
testing illustrated in the case study above is another benefit
of using REQCAP. Finally, REQCAP opens the possibility to
build libraries of components (i.e. a repository of designs) that
can be reused.

In summary, we believe that the results achieved so far
demonstrate that REQCAP can be used to effectively capture
requirements for realistic industrial control systems and can
generate valid and useful test cases.

V. RELATED WORK

Several tools have been proposed for the enrichment of the
modeling process of industrial control systems. Here, we focus
our attention on tools that support graphical models.

A work closely related to the one presented here is [17],
which introduces a systematic procedure for the design of
logic controllers. The procedure uses intermediate formats
to transform informal requirements into an SFC. Informal
requirements are initially formalized using DCs (similar to

|£:] Step-Transition Matrix of High Level Ctrl

Actions

START High Level Ctrl Run Duty Pump A Switch A to PID Ctrl Run Standby Pump B

Run Duty Pump B Switch B to PID Ctrl Run Standby Pump A Switch A and B to PID Ctrl EMD High Level Ctrl

START High Level Ctrl n/a n/a n/a n/a n/a n/a n/a n/a n/a
Run Duty Fump A MCDC n/a n/a n/a n/a n/a n/a n/a n/a
Switch A to PID Ctrl n/a MCDC n/a n/a n/a n/a n/a n/a n/a
Run Standby Pump B n/a n/a MCDC n/a n/a n/a n/a n/a n/a
Run Duty Pump B MCDC n/a n/a n/a n/a n/a n/a n/a n/a
Switch B to PID Ctrl n/a n/a n/a n/a MCDC n/a n/a n/a n/a
Run Standby Pump A n/a n/a n/a n/a n/a MCDC n/a n/a n/a
Switch A and B to PID Ctrl n/a n/a n/a MCDC n/a |ﬂ/’a MCDC n/a n/a
END High Level Ctrl nfa n/a n/a In/a n/a n/a Inja MCDC n/a

Fig. 7: Interface to select the testing coverage criteria. Users can select different

(default is MC/DC).

coverage criteria for different transitions

__— Original | Generated | Generated
ID | Test Description Tgst Test (#1) Test (#2)
1 Pump A (duty) starts correctly when the level > Level 8 yes yes yes
2 Pump A (duty) stops correctly when the level < Level 7 yes yes yes
3 Pump B becomes Duty and starts correctly when the level > Level 8 yes yes yes
4 Pump B (duty) stops correctly when the level < Level 7 yes yes yes
5 Pump A now becomes duty and starts correctly when the level > Level 8 yes yes yes
6 PID speed control of pump A is enabled when the level has continued to rise between Level 7 yes no yes
and Level 8
7 PID speed control of pump A will ramp speed down to minimum when the level is decreased yes no yes
between Level 7 and Level 8
8 Pump A (duty) stops correctly when the level < Level 7 whilst in PID mode yes yes yes
9 Pump B becomes duty and starts correctly when the level > Level 8 yes yes yes
10 | PID speed control of pump B is enabled when the level has continued to rise between Level 7 yes no yes
and Level 8
11 | PID speed control of pump B will ramp speed down to minimum when the level is decreased yes no yes
between Level 7 and Level 8
12 | High level alarm is activated and PID speed output continues to rise when the level is increased to yes yes yes
Level 9 > Level 8
13 | High level alarm is deactivated and pump A and B stop when the Level is decreased to Level 7 yes yes yes
14 | If both pumps are stopped and the level < Level 7, keep pump A stopped no yes yes
15 | If both pumps are stopped and the level < Level 7, keep pump B stopped no yes yes

TABLE I: Tests generated by REQCAP. The first two columns identify the test by ID and description. The third column states
whether the test was present in the original test document. The fourth and fifth columns state whether the test was generated
by REQCAP from the incomplete and complete model, respectively.

REQCAP) and function tables (FTs), which are iteratively re-
fined and subsequently translated into a function plan (FUP) —
representing the structure of the SFC, but without action blocks
and transition conditions — and a step-transition chain (STC)
— which consists of the transitions, steps, and action blocks.
The final step is to combine the FUP and STC to generate the
logic controller as an SFC. The SFC is created for the purpose
of formal verification via model checking. Our work, on the
other hand, is focused on generating high-level SFCs suitable
for reviewing the system and for collecting feedback from
clients. Moreover, test cases satisfying a number of standard
test coverage criteria are also generated.

In [8] the informal requirements are also formalized in an
iterative refinement process but now the resulting DC/FT data
structure is stored in a generic XML data format from which
DC/FT and SFC can be generated without translation. This
ensures consistency between the DC/FT and the SFC and
preserves readability and maintainability.

In [11] and [12] a model-based approach to PLC software
development is introduced. Commonly used methods view
control systems as regards to the physical building blocks (the
equipment) but, similarly to our work, the authors propose a

procedural view. They introduce a domain-specific modelling
language called ProcGraph [9] that is specialized for the
domain of procedural process control software. ProcGraph has
been supported with the creation of a tool, Gecko, which facil-
itates the creation of graphical models, automatic IEC 61131-3
code generation, and automatic generation of documentation
skeletons. ProcGraph has also been used to support model-
driven development of industrial process control software [18].

In [6], a model-based test suite generation method is
presented. The method converts FBD programs into timed
automata and uses model checking to generate tests. The most
important difference between [6] and our work is that REQCAP
was developed to assist in the process of capturing require-
ments highlighting the procedural nature of control systems.
From the captured requirements, it allows the generation of
tests, but also the generation of SFCs. It would not be difficult
to extend REQCAP to also generate FBD programs that could
then serve as input to the work reported in [6]. This difference
also applies to the work described in [24], where the authors
present an algorithm that constructs test sequences from Mealy
machines.

VI. CONCLUSION

We present REQCAP, a model-based requirement model-
ing tool that implements a new method that can be used
to effectively capture requirements of PLC-based systems.
It supports automated generation of test cases according to
different coverage criteria, it can import requirements directly
from REQIF files, and it is capable of automatically gen-
erating Sequential Function Charts (SFCs). We use a real-
world case study to show how REQCAP can be used to model
realistic system requirements. We discuss how the automated
generation of SFCs and test cases can support engineers (and
clients) in visualizing and reviewing requirements. All the
tests listed in the original test document of the case study
are generated automatically by REQCAP. Moreover, REQCAP
generates negative path tests that are not in the original test
document. This demonstrates that REQCAP can be used to
effectively capture requirements and generate valid, useful, and
thorough test cases.

This work was developed in an industrial context and
captures best practice gathered by years of experience de-
livering real PLC-based projects. We believe that REQCAP
addresses the three challenges outlined in Section II: it can
be used to standardize and unify modeling and development
methods, it introduces automation by generating SFCs and
good-quality test cases, thus reducing costs and increasing
consistency across projects. In fact, REQCAP is now being
used on a safety-critical live project that needs to comply
with the functional safety standard IEC 61508. The MC/DC
test coverage will be a requirement, so REQCAP’s support is
envisaged to be of great help.

We are currently in the final implementation stage of a
test automation tool that can import the generated test cases
from REQCAP and communicate with different types of PLCs
to run the tests regardless of the PLC manufacturer (e.g.,
Siemens, Rockwell, or ABB). This will allow us to run an
exhaustive-type of testing (when using MCC coverage, for
example) on the target machine (i.e., the PLC unit under test).
This approach will deliver the same level of confidence of
fully formal approaches such as model-checking methods, but
with the advantage that the tests are run on a real machine
rather than executed symbolically using abstract models. In
the future, we plan to use existing formal models (e.g. [2],
[3]) to formally verify certain aspects of REQCAP, such as
the algorithm that generates the SFCs and the test generation
algorithms. In terms of user interaction, we plan to investigate
the suitability of pen-based devices to facilitate the creation of
hierarchical dependency charts (by reusing material developed
in [20]).

REFERENCES

[1] IBM Rational DOORS. http://www-03.ibm.com/software/products/en/
ratidoor. Accessed: 2017-02-17.

[2] Jan Olaf Blech and Sidi Ould Biha. Verification of PLC properties based
on formal semantics in Coq. In International Conference on Software
Engineering and Formal Methods, pages 58-73. Springer, 2011.

[3] Jan Olaf Blech and Sidi Ould Biha. On formal reasoning on the
semantics of PLC using Coq. arXiv preprint arXiv:1301.3047, 2013.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

SW Cheon, JS Lee, KC Kwon, DH Kim, and H Kim. The software
verification and validation process for a PLC-based engineered safety
features-component control system in nuclear power plants. In Industrial
Electronics Society (IECON), volume 1, pages 827-831. IEEE, 2004.
International Electrotechnical Commission. International standard CEI
IEC 1131-3, Programmable Controllers—Part 3: Programming lan-
guages. 1993.

Eduard Paul Enoiu, Daniel Sundmark, and Paul Pettersson. Model-
based test suite generation for function block diagrams using the uppaal
model checker. In Proceedings of the Software Testing, Verification and
Validation Workshops, pages 158-167. IEEE, 2013.

Mohammad Farsi, Karl Ratcliff, and Manuel Barbosa. An overview of
controller area network. Computing & Control Engineering Journal,
10(3):113-120, 1999.

Stephan Fischer, Martin Hfner, Christian Sonntag, and Sebastian En-
gell. Systematic generation of logic controllers in a model-based
multi-formalism design environment. {IFAC} Proceedings Volumes,
44(1):12490 — 12495, 2011. 18th {IFAC} World Congress.

Giovanni Godena. Procgraph: a procedure-oriented graphical notation
for process-control software specification. Control Engineering Practice,
12(1):99-111, 2004.

Bogdan Humoreanu and Ioan Nascu. Wastewater treatment plant scada
application. In Automation Quality and Testing Robotics (AQTR), pages
575-580. IEEE, 2012.

Gregor Kandare, Giovanni Godena, and Stanko Strm¢nik. A new
approach to PLC software design. ISA transactions, 42(2):279-288,
2003.

Gregor Kandare, Stanislav Strm¢nik, and Giovanni Godena. Domain
specific model-based development of software for programmable logic
controllers. Computers in Industry, 61(5):419-431, 2010.

Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J., and Rierson
Leanna K. A practical tutorial on modified condition/decision coverage.
Technical report, 2001.

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2,
system description. Journal on Satisfiability, Boolean Modeling and
Computation, 7:59-64, 2010.

Jong-Hoon Lee and Junbeom Yoo. Nude: Development environment
for safety-critical software of nuclear power plant. In Transactions of
the Korean Nuclear Society Spring Meeting, volume 2012, pages 1154—
1155, 2012.

Robert W Lewis. Programming industrial control systems using IEC
1131-3. Number 50. IET, 1998.

Sven Lohmann and Sebastian Engell. Systematic logic controller
design as sequential function chart starting from informal specifications.
Chinese Journal of Chemical Engineering, 16(1):43-47, 2008.

Tomaz Lukman, Giovanni Godena, Jeff Gray, and Stanko Strm¢nik.
Model-driven engineering of industrial process control applications. In
Emerging Technologies and Factory Automation (ETFA). IEEE, 2010.
R Mandal, A Kumar, TMG Kingson, RK Pd Verma A Kumar, S Dutta,
SK Chaulya, and GM Prasad. Application of programmable logic
controller for gases monitoring in underground coal mines. IRACSTEngi-
neering Science and Technology: An International J.(ESTILJ), 3(3):516—
522, 2013.

Alexandra Mendes, Roland Backhouse, and Joao F Ferreira. Structure
editing of handwritten mathematics: Improving the computer support for
the calculational method. In Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces. ACM, 2014.
Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

Khenaidoo Nursimulu and Robert L. Probert. Cause-effect graphing
analysis and validation of requirements. In Proceedings of the 1995
Conference of the Centre for Advanced Studies on Collaborative Re-
search, CASCON °95, pages 46—. IBM Press, 1995.
OMG. Requirements Interchange Format (ReqlF).
July 2016.

Julien Provost, Jean-Marc Roussel, and Jean-Marc Faure. Generation
of single input change test sequences for conformance test of pro-
grammable logic controllers. IEEE Transactions on Industrial Infor-
matics, 10(3):1696-1704, 2014.

Detlef Streitferdt, Georg Wendt, Philipp Nenninger, Alexander NyBen,
and Horst Lichter. Model driven development challenges in the au-
tomation domain. In Computer Software and Applications (COMPSAC),
pages 1372-1375. IEEE, 2008.

Technical report,

