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Abstract—In this paper we introduce a new automata based
test generation algorithm implemented in SPECPRO, our library
for supporting analysis and development of formal requirements
in cyber-physical systems. We consider specifications written
in Linear Temporal Logic (LTL) from which we extract auto-
matically trap properties representing the expected behaviour
of the system under development. With respect to manual
generation, the main advantage of SPECPRO is that it frees the
developer from the burden of generating tests in order to achieve
stated coverage targets. Our goal is to have SPECPRO handle
specifications of small-but-critical components in an effective way.

Index Terms—Requirements Engineering, Automatic Test Gen-
eration, Cyber-Physical Systems

I. CONTEXT AND MOTIVATION

Writing test cases early in the design process is a good
practice, advocated by methodologies such as Test-Driven
Development (TDD). Although there is no general consensus
on the overall TDD process and benefits [1], the influence
of early testing in improving design and software quality is
widely acknowledged. Moreover, the test-first principle can
help in identifying and resolving requirements issues and
under-specified behaviors early in the process.

Our goal is to automatically extract a test suite from the
requirement specification, giving the user a tool to system-
atically analyze the behaviors described in the specification
and to put them to work in the subsequent phases. In order
to extract test cases from requirements, different requirement-
based coverage metrics have been proposed in the literature,
although they usually rely on a complete model of the system
for test generation (see [2] for a survey of available meth-
ods). In particular, the work here presented takes inspiration
from [3], a linear temporal logic (LTL) [4] specification-
based test-case generation methodology. They present some
coverage criteria over the Büchi Automata representation of
LTL requirements, and then explore the automata in order to
extract trap properties, i.e., automata comprised of a finite
prefix and a suffix that repeats infinitely often. The negation
of trap-properties can be checked against a complete model
of the system; if a counter-example is returned then it is
considered as a test, otherwise the model does not implement
the behaviour. This methodology saves the test engineer from
the burden of writing tests manually, so it could be used to
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boost TDD. However, it relies on the availability of a complete
model which, in a TDD context, we might simply not have,
and incomplete models would not suffice. Moreover, it also
relies on the fact that the model satisfies all the requirements,
i.e., each requirement has to be verified against the model.

In this paper, we extend the contribution of [3], presenting
a new way to generate test-cases that avoid relying on the
existence of a complete model of the system. In particular,
while in [3] a different automaton is built for each behavior,
we build a single automaton representing all behaviors of
the specification and we traverse it in order to extract valid
lasso-shaped test cases. This approach frees us from the
need of a model, but we require a complete specification to
be known in advance. In this regard, we are more closely
related to the synthesis problem, but we limit our scope to
the generation of a limited set of behaviors that the final
system should implement, and we do not aim at synthesizing
the whole system. Since the generation of the automaton can
be costly, we consider our approach effective for small-but-
critical subsystems for which the speed of development must
be balanced with high confidence in their correctness. Finally,
we contribute SPECPRO, an open-source tool that implements
the proposed algorithm, along with other features, such as the
consistency checking of requirements and the identification of
inconsistent minimal sets thereof.

The rest of the paper is organized as follows. In Section II
we give some definitions that are used in Section III to describe
the general idea underlying the test generation algorithm. In
Section IV we present the tool SPECPRO and briefly describe
its functionalities, while in Section V we show an example
to illustrate how the algorithm works. Finally, Section VI
concludes the paper with some final remarks.

II. BACKGROUND

LTL formulae consist of atomic propositions, Boolean op-
erators, and temporal operators. The syntax of a LTL formula
φ is given as follows:

φ = > | ⊥ | a | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2 | (φ)

where a ∈ AP , φ, φ1, φ2 are LTL formulae, X is the “next”
operator and U is the “until” operator. We also consider other
Boolean connectives like “∧” and “→” with the usual meaning
and the temporal operators ♦φ (“eventually”) to denote >U φ
and �φ (“always”) to denote ¬♦¬φ. In the following, unless
specified otherwise using parentheses, unary operators have
higher precedence than binary operators. Briefly, the semantics
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of an LTL formula φ yields a ω-language Words(φ) of infinite
words satisfying φ, i.e., infinite sequences over the 2AP

alphabet (see [5] for a full description).
Definition 1 (Non Deterministic Büchi Automata): A non

deterministic Büchi Automata (NBA) A is a tuple A = (Q, Σ,
δ, q0, F ) where Q is a finite set of states, Σ is an alphabet,
δ : Q×Σ → 2Q is a transition function, q0 ∈ Q is the initial
state, and F ⊆ Q is a set of accept states, called acceptance
set. Σω denotes the set of all infinite words over the alphabet
Σ. We denote σ = A0A1A2 . . . ∈ Σω one such word and
σ[i] = Ai for the i-th element of σ. For sake of simplicity, the
transition relation q′ ∈ δ(q,A) where q, q′ ∈ Q, and A ∈ Σ,
can be rewritten as : q A−→ q′.

In Figure 1 is presented an example of Büchi Automata,
where Q = {0,1,2,3}, Σ = 2{a,b,c}, Q0 = {0}, F={1}, and
transition of the form qi

a∨b−−→ qi+1 is a short notation for the
three transitions qi

a−→ qi+1, qi
a,b−−→ qi+1, qi

b−→ qi+1

Fig. 1. Büchi Automata example.

Definition 2 (Run): A run for a NBA A = (Q, Σ, δ, q0, F )
is a an infinite sequence %= q0q1q2... of states in A such that
q0 is the initial state and qi+1 ∈ δ(qi, Ai) for some Ai ∈ Σ.
Given a run %, we define Words(%) the set of words that can
be produced following the transitions in %.

Definition 3 (Induced Run): Given a word σ, a run % is said
to be induced by σ, denoted σ ` %, iff qi+1 ∈ δ(qi, σ[i]) for
all i ≥ 0.

Definition 4 (Accepting run): A run % is accepting if there
exist qi ∈ F such that qi occurs infinitely many times in %.
We denote acc(A) the set of accepting runs for A.

Definition 5 (Lasso-Shaped run): A run % over a NBA A =
(Q, Σ, δ, q0, F ) is lasso-shaped if it has the form %=α(β)ω ,
where α and β are finite sequences over the states Q. A lasso-
shaped run is also accepting if β ∩ F 6= ∅.

The length of % is defined as |%|= |α| + |β|, where |α| (resp.
|β|) is the length of the finite sequence of states α (resp. β).

Definition 6 (ω-language recognized by A): A ω-language
L(A) of a NBA A = (Q, Σ, δ, q0, F ) is the set of all infinite
words that are accepted by A. A word σ ∈ Σω is accepted
by A iff there exists an accepting lasso-shaped run % of A
induced by σ. Formally, L(A) = {σ ∈ Σω | ∃% = α(β)ω.% ∈
acc(A) ∧ σ ` %}.

III. AUTOMATIC TEST GENERATION FROM BÜCHI
AUTOMATA

Given the set of requirements written as LTL formulae ϕ1,
. . . , ϕn, over the set of symbols AP , we build the conjunctive

Fig. 2. Infinite Word Generator Algorithm for NBA.

formula Φ = ϕ1∧ ...∧ϕn, and construct a NBA AΦ such that
Σ = 2AP and the language L(AΦ) contains all and only the
words in Words(Φ). The automaton AΦ represents the allowed
behaviors described by the requirements. The algorithm aims
to traverse AΦ, in order to look for lasso-shaped accepting
runs with length K that produce a set of words W ⊆ L(AΦ).
Notice that the size of the set of accepting runs in AΦ

with length K increases with K and K is fixed a priori.
Furthermore, inspired by testing techniques, we introduce a
testing objective O as a set of elements that must be satisfied
by a set of lasso-shaped runs, so that SPECPRO generates
a corresponding set of words W ⊂ Words(Φ) that satisfy
as many elements as possible in O. In particular we define
different testing objectives, i.e. coverage measures:
• STATE COVERAGE: each state in the NBA should be

traversed at least once in a run induced by a generated
word.

• ACCEPTANCE COVERAGE: each acceptance state in the
NBA should be traversed at least once in the recurring
part of the lasso-shaped run induced by a generated word.

• TRANSITION COVERAGE: each transition in the NBA
should be traversed at least once in a run induced by
a generated word.

These coverage measures are similar to the ones proposed
in [3]. Since we only have one automaton, we do not need
to distinguish between weak and strong coverage. Moreover,
our acceptance coverage is the NBA version of the Accepting
State Combination Coverage (defined over Generalized Büchi
Automaton).

The transition coverage clearly subsumes the state coverage,
i.e., in order to cover all the transitions of an NBA, also all
the states must be covered. On the other hand, the acceptance
condition is orthogonal to the other two conditions, i.e., state
and transition coverage do not guarantee acceptance coverage,
and viceversa. Consequentely, we also add the combined
coverage of acceptance plus state and transition coverage
respectively. Testing objectives are also used to stop the test
generation; when all the testing objectives have been covered,
the generation should stop.

In Figure 2 we present the algorithm implemented in
SPECPRO for infinite word generation of bound K. The



procedure NBA2WORDS generates a setW ⊂ Words(Φ) with
Φ = ϕ1 ∧ ... ∧ ϕn obtained from the set of requirements
R = {ϕ1, ..., ϕn}. The input is a NBA AΦ obtained from
the formula Φ, a testing objective O and the size K of
the lasso-shaped runs. We implemented the generation of the
NBA using Spot [6], a C++ library for LTL, ω-automata
manipulation and model checking. NBA2WORDS starts by
picking an element from O (if not empty) (line 4), and then
it calls a function GETACCEPTEDRUNLS that traverses A to
look for an accepting lasso-shaped run % with length K (line
5). An empty % means that there is no lasso-shaped accepting
run with length K satisfying the objective o (line 6). On the
other hand, if such a % exists, the algorithm calls GETWORD
to compute the word σ induced from %; σ is added to the set of
wordsW (lines 9–10), and then each element o′ satisfied by σ
is eliminated from O (line 11). This is repeated until there are
no more elements in O to satisfy. Notice that NBA2WORDS
does not ensure thatW satisfies all the elements of O; indeed,
there could be an element that cannot be satisfied by any run
with length K, but it can be satisfied increasing the length of
the words generated.

The interpretation of the generated test cases depends on the
level of abstraction of requirements and on the system under
test (SUT). They can be directly interpreted as tests for the
SUT, or further refined with classical model-checking-based
strategies if a (partial) model of the system is available. For
example, in our experiments we converted lasso-shaped words
in never-claims and extracted counterexamples with SPIN [7],
extending the initial word with a refined behavior. In order
to solve the lasso-shaped part of the test, we can apply the
same strategies described in [8] either for white- or black-box
testing.

IV. SPECPRO

SPECPRO is an open-source1 Java library for supporting
analysis and development of formal requirements. It takes in
input a list of requirements expressed in textual form as Prop-
erty Specification Patterns (PSPs) [9] or as LTL formualae; and
produces different outputs, depending on the specific task.

PSPs are meant to describe the essential structure of system
behaviors in form of structured English sentences [10] and to
provide expressions of such behaviors in a range of common
formalisms. An example of a PSP is given in Figure 3 — with
some part omitted for sake of readability.2 In more detail, a
PSP is composed of two parts: (i) the scope, and (ii) the
body. The scope is the extent of the program execution over
which the pattern must hold, and there are five scopes allowed:
Globally, Before, After, Between, After-until. The body of a
pattern describes the behavior that we want to specify.

In particular, SPECPRO contains a collection of algorithms
and data structures to accomplish the following tasks:

1https://gitlab.sagelab.it/sage/SpecPro
2The full list of PSPs considered in this paper and their mapping to LTL

and other logics is available at http://ps-patterns.wikidot.com/.

a) Encode into a LTL satisfiability problem: it maps each
PSP into the equivalent LTL formula, encodes the specification
into an LTL satifiability problem and translates it for a specific
model-checker input. Currently AALTA [11], NUSMV [12]
PLTL [13], and TRP++ [14] are supported. SPECPRO im-
plements the encoding presented in [15], whereby PSPs are
extended by considering Boolean as well as atomic numerical
assertions of the form x ./ c, where x is a variable of the
system, c ∈ R is a constant real number and the operator
./∈ {<,<=,=, >=, >} has the usual interpretation.

b) Consistency Checking: it performs an inner consis-
tency check of the requirements set, i.e., logical errors in
the specification that prevent any possible system to satisfy
all requirements. It employs the LTL satisfiability encoding
described before, it handles an external call to the model
checker, and interprets the returned output, providing a user-
friendly API for the developer (currently only AALTA and
NUSMV are supported).

c) Minimal Unsatisfiable Core (MUC) extraction [16]:
In case of an inconsistent specification, the user often needs
an hint about the cause of the inconsistency. Usually, in order
to help the user, a Minimal Unsatisfiable Core (MUC) [17],
namely an irreducible subset of requirements that is still in-
consistent, is extracted. SPECPRO implements two algorithms
for MUCs extraction from a PSP specification document: (i)
the common linear deletion-based algorithm, that removes
requirements one at a time and test the satisfiability of the
reduced set; and (ii) the dichotomic one, that employs a greedy
strategy and it is usually faster when the MUC is much smaller
then the full requirements set. These algorithms build on top
of the components developed for consistency checking.

d) Automatic Test Generation: It implements the algo-
rithm described in Section III. It relies on SPOT to build a
Büchi Automaton of the specification and employs the Iterative
Deepening Deep First Search (IDDFS) algorithm to extract
valid paths of different lengths that can be used for testing.
The user can define a minimum and a maximum value of K
and a coverage criteria. The algorithm then starts searching
for small values of K, iteratively increasing it until the testing
objective is fulfilled or the maximum value of K is reached.

Finally, SPECPRO also provides a minimal command-line
interface that enables the user to perform the same tasks from a
shell. A user-friendly graphical user interface is also available
with REQV [18], a web application that builds on top of
SPECPRO to help non-expert users in the consistency checking
of requirements.

V. EXAMPLE

In this section we present an example to illustrate how the
algorithm works. Consider the following requirements written
in LTL:

R1 � (b → ♦ c) R2 ♦ a

Running SPECPRO on this specification, with Kmin = 2,
Kmax = 5, and State Coverage as criteria, the following steps
are executed:

https://gitlab.sagelab.it/sage/SpecPro
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Response

Describe cause-effect relationships between a pair of
events/states. An occurrence of the first, the cause, must be
followed by an occurrence of the second, the effect. Also
known as Follows and Leads-to.

Structured English Grammar
It is always the case that if P holds, then S eventually holds.

Example
It is always the case that if object detected holds, then
moving to target eventually holds.

Fig. 3. Response Pattern. A pattern is comprised of a Name, an (informal)
statement describing the behavior captured by the pattern, and a (structured
English) statement that should be used to express requirements.

• Build the conjunctive formula φ = � (b → ♦ c) ∧ ♦ a.
• Set the starting bound for IDDFS to K = 2.
• Build the NBA of φ (shown in Figure 1) with SPOT.
• Generate the accepting lasso-shaped run ρ1 = {0}{1}ω ,

inducing the word ω1 = a, {c}ω .
• Update O with ω1, marking states 0 and 1 as covered.

Now only states 2 and 3 remain to be covered.
• Since no other lasso shaped accepting run of lenght 2 can

be generated, the bound K is increased to 3.
• Several lasso shaped runs with length 3 can be generated,

but here we are only interested in those satisfying testing
ojectives that no previous generated words can satisfy. For
example, the run ρ2 = {0}{0}{1}ω , inducing the word
ω2 = ab, ac, {c}ω . However no new testing objective is
satisfied by ω2, so it is discarded.

• Proceeding further, two other lasso shaped runs are
found: (i) ρ3 = {0}({1}{2})ω , inducing the word ω3 =
ac,{bc,c}ω , and (ii) ρ4 = {0}{3}({1})ω , inducing the
word ω3 = abc, ac, {c}ω . The two words satisfy all the
testing objectives, namely covering states 2 and 3 since
the runs traverse them.

• No more states have to be visited, so the algorithm termi-
nates successfully. Three different words are generated,
indicating the behaviors wherefrom tests can be extracted.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a new automata based test gen-
eration procedure and related implementation in the SPECPRO
library. To carry on the test generation task, requirements
are formalized as LTL formulas and the Büchi Automaton
representation of their conjunction is built. The automaton is
then explored with different strategies to extract words that
have to be implemented in the system. Concerning current
and future work, our next steps will focus on investigating
additional coverage criteria and quality measurements to assess
the generated words. Moreover, we wish to deal with the
scalability issues we encountered during our preliminary ex-
periments. Finally, SPECPRO is still under active development

and we aim at adding new functionalities and explore more
expressive logics.
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