Cluster-Based Test Scheduling Strategies Using Semantic
Relationships between Test Specifications

Sahar Tahvili
RISE SICS Visteras AB
Visteras, Sweden

Leo Hatvani
Malardalen University
Visteras, Sweden

Michael Felderer
University of Innsbruck
Innsbruck, Austria

sahar.tahvili@ri.se leo.hatvani@mdh.se michael felderer@uibk.ac.at
Wasif Afzal Mehrdad Saadatmand Markus Bohlin
Malardalen University RISE SICS Visteras AB RISE SICS Visteras AB

Visteras, Sweden
wasif.afzal@mdh.se

ABSTRACT

One of the challenging issues in improving the test efficiency is
that of achieving a balance between testing goals and testing re-
sources. Test execution scheduling is one way of saving time and
budget, where a set of test cases are grouped and tested at the
same time. To have an optimal test execution schedule, all related
information of a test case (e.g. execution time, functionality to be
tested, dependency and similarity with other test cases) need to be
analyzed. Test scheduling problem becomes more complicated at
high-level testing, such as integration testing and especially in man-
ual testing procedure. Test specifications at high-level are generally
written in natural text by humans and usually contain ambiguity
and uncertainty. Therefore, analyzing a test specification demands
a strong learning algorithm. In this position paper, we propose a
natural language processing (NLP) based approach that, given test
specifications at the integration level, allows automatic detection of
test cases’ semantic dependencies. The proposed approach utilizes
the Doc2Vec algorithm and converts each test case into a vector
in n-dimensional space. These vectors are then grouped using the
HDBSCAN clustering algorithm into semantic clusters. Finally, a
set of cluster-based test scheduling strategies are proposed for exe-
cution. The proposed approach has been applied in a sub-system
from the railway domain by analyzing an ongoing testing project
at Bombardier Transportation AB, Sweden.

KEYWORDS

Software testing, Test scheduling, NLP, Dependency, Clustering,
Doc2Vec, Optimization, HDBSCAN

ACM Reference Format:

Sahar Tahvili, Leo Hatvani, Michael Felderer, Wasif Afzal, Mehrdad Saadat-
mand, and Markus Bohlin. 2018. Cluster-Based Test Scheduling Strategies
Using Semantic Relationships between Test Specifications. In Proceedings of
Requirements Engineering and Testing (RET’18). ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

For over a decade, applications of natural language processing (NLP)
techniques were considered in different domains such as machine
learning, deep learning, artificial intelligence, and static analysis.

RET’18, June 2, Gothenburg, Sweden
2018. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Visteras, Sweden
mehrdad.saadatmand@ri.se

Visteras, Sweden
markus.bohlin@ri.se

Moreover, using the NLP techniques might be a suitable approach
for improving the efficiency of documentation processes, which can
be applied in different phases of software development life cycle
(SDLC) such as requirement analysis, planning, and also testing.
Since, in many cases, both requirements and test cases are formu-
lated in natural text, NLP techniques can be used for analyzing the
details of a textual specification. Some specific information such as
required time for executing a test case, the test goal, functionality to
be tested and the relationship between test cases can be detected by
analyzing the textual specifications. One challenge for improving
a testing process is detecting the dependency between test cases.
By having an overview of dependencies between test cases, we
can prioritize, select, and schedule test cases for execution. Some
previous studies show that the dependency between test cases is
too complex and will impact the result of a test execution [1]. In
our previous work [15] we proposed a method for measuring the
degree of dependency between test cases. In the proposed approach,
the dependency degree has been measured manually between test
cases. Since the number of required test cases for testing a system is
rather large, a manual approach is not suitable to solve the problem
efficiently. In the present position paper, we propose an NLP based
approach for detecting the semantic dependency between test cases
based on the textual test specifications. We also present a set of
cluster-based strategies for scheduling tests. This paper provides
the following contributions: (1) detecting the semantic dependency
between test cases through analyzing test specifications, (2) cluster-
ing test cases based on the semantic dependency, and (3) proposing
a set of cluster-based test scheduling strategies for execution.

2 BACKGROUND AND RELATED WORK

The lack of accurate test specifications analysis may lead to an ineffi-
cient testing process. Knowing execution time of test cases, require-
ment coverage and the dependency between test cases, are some
required information that testers have to receive in the early stage
of testing. Paying no attention to dependencies between test cases
may lead to sequential failure of test cases and thereby waste of
testing resources. In [13] we showed that the dependencies among
test cases give partial information on the verdict of a test case from
the verdict of another one. Moreover, Arlt et al. in [1] showed that
test cases will be failed after each other if the testers do not care
about the dependency between test cases. In the level of integra-
tion testing, individual software modules will be combined and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

RET’18, June 2, Gothenburg, Sweden

tested as a group, therefore, the problem of detecting the depen-
dency between test cases becomes clearer. Test optimization is the
main purpose of using test case dependency information, where
test cases will be prioritized, scheduled and automatized by using
this. Indumathi et al. in [7] classified the functional dependency
between test cases into open and close dependency and prioritized
test cases based on dependency structures. In the proposed clas-
sification, TC2 must be executed at any time but before TC1 if
there is an open dependency between them. However, in a close
dependency TC2 can be executed if TC1 has been executed before
TC2. The dependency structures between test cases has been ex-
tracted manually in [7] thus the proposed approach is not scalable
to handle a large set of test cases. Component dependency model
(CMD) represents another type of dependency between test cases,
introduced by Caliebe et al. in [3]. The proposed method in [3] is
applicable for the component-based systems and dependencies can
be identified through analyzing system structure and architecture,
combined with additional information extracted from the system
requirements.

3 SEMANTIC-DEPENDENCY MODEL

None of the researched dependencies in software testing domain,
handles the semantic relationships between test cases. Generally,
the semantic relationships are the associations that exist between
the meanings of sentences or the meanings of phrases [12]. In this
paper, we define a new type of dependency between test cases as:

Definition 3.1. A semantic dependency between test cases repre-
sents the conceptual associations between test cases which are not
necessarily equivalent or hierarchical.

In other words, test case TC1 and TC2 are semantically depen-
dent on each other, if both contain conceptual regularities or fun-
damental semantic relations. Moreover, detecting the semantic re-
lationship between test cases which are conceptually associated
requires deeper vocabulary analysis, therefore, the required input
for identifying the semantic relationships is a test specification.
Generally, a manual test case has multiple test steps including
preconditions, test activities (action, expected reaction) and post-
conditions. Sometimes test cases have some mutual steps, such as
same preconditions which bring a system to an acceptable state
before testing. Executing those test cases as a group can lead to
an optimal usage of testing resources. The semantic dependency
between manual test cases can be summarized as:

o Test cases have similar preconditions, initial state or post-
conditions

The preconditions for a test case specify the setup needed for
the test case to be executed successfully. Moreover, preconditions
include the state that a system and its environment must satisfy
before executing a test case [2]. The post-condition is a statement
which describes the conditions that will be true when a test case
has been executed successfully. The manual test cases are written
by humans and are not easy to detect the similar preconditions
and neither the post-conditions in a test specification. Furthermore,
making a system ready for testing (running the preconditions in a
test case) is a time and cost consuming process. Therefore, when
a system is reaching an acceptable state, more test cases which

Tahvili, S. et al

require the same system state can be tested as a group together.
However, though running those test cases which require same
post-conditions, we are able to save more time.

o Test cases test same functionality of a software

The main function which will be tested by a manual test case, is
usually described in textual details into several test steps. Moreover,
a functionality of a software to be tested, can be divided within
different test cases. Creating a group of test cases which test the
same functionality of a software can help testers to save more time.
Test cases which have a semantic dependency might test same
functionality of a software application and can be tested at the
same time.

4 THE APPROACH

In this section, we describe our approach for scheduling manual
test cases for execution based on the semantic dependency between
them. The proposed approach is based on the valuation of test spec-
ification, as well as clustering of the dependent test cases. Finally,
different test scheduling strategies, based on the semantic depen-
dency between the test cases, will be proposed. Our approach is
based on two main algorithms, which are able to handle a large
set of data. Moreover, the testers can easily re-run the proposed
algorithms, when new test specifications are added to the set. The
steps of our proposed approach are shown in Figure 1, where the
blue color represents the NLP stage and the green color shows the
cluster analysis stages. In the following text, we describe the steps
of the proposed approach:

Step 1: detecting the semantic relationships between manual test
cases using the Doc2Vec algorithm.

Step 2: cluster the semantic dependent test cases using HDBSCAN
algorithm.

Step 3: propose a set of non-clusterable test cases as independent
test cases.

Step 4: use one of the cluster-based scheduling strategies for test
execution.

As illustrated in Figure 1, the required input for running our
approach is a test specification. By running the Doc2Vec algorithm,
a set of vectors (which represent each test case) in a n-dimensional
space will be generated. Thereby, HDBSCAN algorithm classifies
test cases into several clusters. Finally a set of scheduling strategies
will be proposed for execution. In other words, the expected output
of the proposed approach is a set of semantic dependent test cases,
arranged for execution, based on scheduling strategies.

4.1 Document Embedding Using Doc2Vec

The Doc2Vec algorithm consists a set of shallow and two-layer
neural networks models which are designed to produce document
embedding [10]. The basis of the Doc2Vec is based on learning
representations forward in such a way that Doc2Vec takes as its
input a a large corpus of text and generates a unique vector in
n-dimensional space for each unique document in the corpus [8].
From here, we can measure the similarity between two documents
by calculating the Cosine similarity of the two vectors that represent
the corresponding documents. The similarities in the n-dimensional
space can be extracted to do comparison [8] where the words with
similar meaning end up lying close to each other. Furthermore, the

Cluster-Based Test Scheduling Strategies Using Semantic Relationships

RET’18, June 2, Gothenburg, Sweden

Input Step 1 Step 2 Step 3 Step 4
Test ification Derive similarity Cluster the Propose a set Schedule the clusters for
es(* Sgsccx fclﬁi S;’ S| — vectors from — similarity vectors | = of non-clusterable = —~ execution based on
. the Doc2Vec model using HDBSCAN vectors the proposed strategies

Figure 1: The steps of the proposed approach

Doc2Vec uses vector arithmetic to work with analogies, for instance
the famous example: Doctor - Man + Woman = Nurse and also USB -
Port + Display = HDMI. In this study we train the Doc2Vec algorithm
in such a way that each test specification has been considered as
an input document. As the first step, Doc2Vec extracts the seman-
tic dependency between test specifications automatically, through
utilizing deep linguistic patterns which have been defined over the
dependency grammar of sentences [8].

4.2 Clustering with HDBSCAN

The second step of our proposed approach will deal with clustering.
After running the Doc2Vec algorithm, a set of high dimensional
vectors (which represents each test specification) will be generated.
The vectors which have less distances to each other will be classi-
fied as a cluster. This step, will be performed by a fast and robust
algorithm called HDBSCAN (Hierarchical Density-Based Spatial
Clustering of Applications with Noise), which is able to handle large
high-dimensional data sets and separate clusters from the noise.
The HDBSCAN measures the distance between the vectors and
provides a set of clusters and also a set of non-clusterable vectors.
Other clustering algorithms are designed to cluster every vectors
to some cluster, which indicates their inability to handle noise in
the clustering process, or, in some case, the algorithms cannot prop-
erly process high-dimensional data. In this work, we interpret the
non-clusterable vectors as independent test cases, which can be
executed in no particular order. Furthermore, each cluster consists
of a set of test cases which have a semantic dependency and must
be tested together at the same time.

4.3 Cluster-Based Test Scheduling Strategies

Determination of the possible strategies for test scheduling and
selecting a proper strategy is assigned in the last step of our ap-
proach. In this section, we propose a set of cluster-based test case
scheduling strategies based on the semantic dependency between
test cases. The following definitions are applicable:

Definition 4.1. Let C := {C1,Cq,...,Cn} where, each Cj is a
cluster,j=1,2,...,n.

Definition 4.2. Let cardinality of each C; be K, where K; € N
and K > 1. We define K; as a cluster size.

In other words, the size of cluster indicates the number of test
cases per cluster.

Definition 4.3. P := {P1, P2, ...,Ppn} where each P; is a unique
property for all member of Cj; that is ¥x € Cj, 3! Ps; such that
x €Ps;, for every j € {1,2,..,n}.

In this work, we utilize the functional requirement group (FG)
as a cluster property, where, every single test case belongs to one
functional group and tests a specific part of a system under test. For

instance, brake system and air supply are two different functional
groups.

Definition 4.4. We define t; as a time function for every C; such
that tj : Cj — (0,).

The time function in the present work, represents the required
time that a cluster of test cases takes for execution (the sum of test
cases execution time). Since each test cases take different time for
execution, then t; will be changed for every single C;. We need
to consider that, execution time for test cases can be predicted by
performing some regression analysis on previous executed test
cases [14]. If there is no execution data available for test cases,
we can assume all test cases have the same execution time. Using
the proposed definitions, we define the following cluster-based
strategies for test case scheduling:

e Strategy 1: C; has a higher priority than C; if and only if
K; > Kj, where i,j € {1,2,...,n}, moreover this strategy
can be called as increasingly ordering. However, strategy 1
can be defined as decreasingly ordering such that: C; has
a higher priority than C; if and only if K; < Kj, where
ije{l2...,n}

In other words, the clusters will be ranked in strategy 1 based
on their size. However, if two (or more) clusters have a same size
(Ki = Kj), then strategy 1 is not applicable and a new strategy
should be considered.

e Strategy 2 : Let Ci={xyi.x24,-. XK1 } » Cj={x1,j. %2, ju XK h
where K;=K;. If x1,i€Ps; i and x1,7€Ps; s for 1=1,2,....K;. We
define: T={Psy,i.Psy. i Py i} and j::{Psl,,-,PSZJ,...,PSK]_J-},
Thus ¢; has a higher priority than ¢; if and only if |7]>|J].

In strategy 2, the clusters which contain test case with different
property (functional group) will be top ranked. In fact, if C; includes
two test cases with two different properties (2 unique FGs), has a
higher priority than C; with the same size (2 test cases) which test
just one FG (test cases have a same property). However, strategy 2
is not applicable if two (or more) clusters contain test cases which
have a same property (|7| = |J|) with the same size (K; = Kj).

o Strategy 3 : We define T; := Zf;l ti(xg i), Xk, ; € C; and
szzzfil tj(xk, ;). xk,j€C;, where K;=K; and ke{1,2,...,K; }. Thus
C; has a higher priority than ¢; if and only if T; <7;. However
if T;=Tj, there is no priority ordering to those clusters.

In strategy 3, the clusters which take less time for execution
will be top ranked. Strategy 3 is applicable when an estimation of
execution time for test cases is available. As stated before, through
historical analysis of previously executed test cases, we are able to
predict the execution time for test cases [14]. Furthermore, if we
assume same execution time for test cases we are faced with the
situation that two (or more) clusters have a same size and same
property, we can run those clusters without any order.

RET’18, June 2, Gothenburg, Sweden

5 PROOF OF CONCEPT

The feasibility of the proposed approach has been done through
studying an on-going project for underground subway train in
Stockholm, called C30 project at Bombardier Transportation AB.

5.1 Case Study Report

The units of analysis in this case study are manual test cases at the
integration testing level for an ongoing project called C30 project.
A total of 29 test suites, which are designed for testing different
functional groups, have been extracted from the DOORS database
at Bombardier. The extracted test cases are converted into vec-
tors using paragraph-vectors [4] implementation of the Doc2Vec
model, and then the test cases have been clustered by applying
HDBSCAN [5] algorithm. Table 1 lists the functional groups and
the number of associated test cases for testing various FG. More-
over, these test cases are run at a sub-system level, meaning that
they are more time consuming to run than tests at unit level [6].
Therefore, executing dependent test cases which require same setup
and conditions can help testers significantly reduce the testing time.

No. Functional group Test Case | Steps | Words
1 ATP 6 35 458
2 | Air Supply 2 19 844
3 Bogie 4 29 779
4 CCTV 7 28 476
5 DVS 1 5 141
28 Vehicle Coupler 11 40 488
29 Windscreen 4 34 345

Table 1: Functional group with associated test cases (partial)

Moreover, Table 2 represents the clusters of test cases which are
generated by HDBSCAN.

Cluster | Test Case | Functional Groups
Cy 126 Independent test cases
C1 6 Drive and Brake Function, DVS, ATP, Traffic Radio Functions
Cy 4 Drive and Brake Function, Safe Exterior Access, CCTV
C3 9 Safe Exterior Access, Train Inauguration
Cy 3 Safe SITS
Cs 7 Safe Bogie, General Requirements
Ce 8 Train Inauguration Functions, Drive and Brake Function
Cy 6 Exterior and Interior Access Function, Safe SITS

Table 2: The proposed clusters for scheduling (partial)

In Table 2, 126 test cases are identified as independent test cases.
A total of 93 clusters are determined for dependent test cases (not
all clusters are shown in Table 2). As explained earlier, test cases in
Table 2 have been created for integration testing, where individual
FGs will be combined and tested as a group, moreover, most of the
generated clusters in Table 2 are included test cases from different
FGs. However, some clusters such as C4 contain test cases from just
one FG. In this study, we just rank some of the generated clusters in
Table 2 according to the proposed strategies in Section 4. However,
Table 3 represents the number of 7 clusters which are ranked based
on three different strategies.

As stated before, a method for estimating the execution time for
manual test cases has been proposed by us previously [14], thereby,
strategy 3 is applicable in this work. As we can see in Table 3, the

Tahvili, S. et al
Strategy Cluster
Strategy 1 | C3, Cg, Cs, C7, Cy, Cy, Cy
Strategy 2 | Cy, Cz, C3, Cs, Cg, C7, Cy
Strategy 3 | Cs, C4, Cs, C1, C2, C7, C3

Table 3: The proposed scheduling strategies

execution time for 7 tests cases in cluster Cs is less than 3 test cases
in cluster Cy, therefore Cs has a higher priority than C4. However,
independent test cases have been clustered in C,, which can be
executed without any particular order or other criteria such as
execution time and requirement coverage can be considered for
ranking them.

6 DISCUSSION & FUTURE EXTENSIONS

To detect different type of dependencies between test cases, various
phases of a software development life cycle (SDLC) such as design,
requirements and testing need to be analyzed. In this paper, we
strive to propose a solution for such a situation that other infor-
mation (requirement, internal signals, software architecture, etc.)
are assumed to be not available. Moreover, executing a set of test
cases which require the same system and environment setting is
extractable from test specification. In the future, we are going to
analyze the system requirement specifications (SRS) in order to
detect other type of dependencies between test cases. However,
other clustering algorithms such as Fuzzy C-Means, K-Means can
be utilized for the clustering part of the proposed approach. Fi-
nally, a decision support system can be designed to schedule test
cases for execution, based on the dependencies between test cases,
requirement coverage and execution time.

7 SUMMARY & CONCLUSION

In this position paper, we proposed a cluster-based approach for
scheduling integration test cases based on the semantic dependency
between test specifications. The proposed approach has been ap-
plied to an industrial use case at Bombardier Transportation AB.
The results of the proof of concept indicate that the concept of
semantic dependency exists between integration test cases from
different functional groups and can be detected through text analy-
sis. Additionally, test cases have been divided into several clusters
based on their semantic dependencies. Moreover, three different
scheduling strategies have been proposed by us, where test cases
will be given a different order for execution based on the proposed
strategies. Finally, we interpret non-clusterable vectors as indepen-
dent test cases.

REFERENCES

[1] S. Arlt, T. Morciniec, A. Podelski, and S. Wagner. 2015. If A Fails, Can B Still
Succeed? Inferring Dependencies between Test Results in Automotive System
Testing. In 2015 IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST). 1-10. https://doi.org/10.1109/ICST.2015.7102593

[2] M. Bertrand. 1997. Object-oriented Software Construction. Prentice-Hall, Inc.

[3] P. Caliebe, T. Herpel, and R. German. 2012. Dependency-Based Test Case
Selection and Prioritization in Embedded Systems. In 2012 IEEE Fifth Inter-
national Conference on Software Testing, Verification and Validation. 731-735.
https://doi.org/10.1109/ICST.2012.164

[4] L.Hatvani. 2018. Paragraph-vectors implementation. https://github.com/inejc/
paragraph-vectors. (2018).

[5] L.Hatvani. 2018. The used implementation of the HDBSCAN algorithm. https:
//github.com/scikit-learn-contrib/hdbscan. (2018).

[6] H.Hemmati, L. Briand, A. Arcuri, and Sh. Ali. 2010. An enhanced test case selec-
tion approach for model-based testing: An industrial case study. In Proceedings

https://doi.org/10.1109/ICST.2015.7102593
https://doi.org/10.1109/ICST.2012.164
https://github.com/inejc/paragraph-vectors
https://github.com/inejc/paragraph-vectors
https://github.com/scikit-learn-contrib/hdbscan
https://github.com/scikit-learn-contrib/hdbscan

Cluster-Based Test Scheduling Strategies Using Semantic Relationships

(71

8

=

[10

[11]

[12]

[13

[14]

[15]

of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE’10). ACM, New York, NY, USA.

C.P. Indumathi and K. Selvamani. 2015. Test Cases Prioritization Using Open
Dependency Structure Algorithm. Procedia Computer Science 48 (2015), 250 —
255. https://doi.org/10.1016/j.procs.2015.04.178 International Conference on
Computer, Communication and Convergence (ICCC 2015).

Q. Le and T. Mikolov. 2014. Distributed Representations of Sentences and Docu-
ments. In Proceedings of the 31st International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research), Eric P. Xing and Tony Jebara (Eds.), Vol. 32.
PMLR, Bejing, China, 1188-1196. http://proceedings.mlr.press/v32/le14.html

I. Medeiros, N. Neves, and M. Correia. 2016. DEKANT: A Static Analysis Tool
That Learns to Detect Web Application Vulnerabilities. In Proceedings of the 25th
International Symposium on Software Testing and Analysis (ISSTA 2016). ACM,
New York, NY, USA, 1-11. https://doi.org/10.1145/2931037.2931041

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. CoRR abs/1301.3781 (2013). arXiv:1301.3781
http://arxiv.org/abs/1301.3781

P. Runeson, , and H. Martin. 2008. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering 14, 2 (19
Dec 2008), 131. https://doi.org/10.1007/s10664-008-9102-8

V. C. Storey. 1993. Understanding semantic relationships. The VLDB Journal 2, 4
(01 Oct 1993), 455-488. https://doi.org/10.1007/BF01263048

S. Tahvili, M. Bohlin, M. Saadatmand, S. Larsson, W. Afzal, and D. Sundmark.
2016. Cost-Benefit Analysis of Using Dependency Knowledge at Integration
Testing. In The 17th International Conference On Product-Focused Software Process
Improvement. http://www.es.mdh.se/publications/4438-

S. Tahvili, M. Saadatmand, M. Bohlin, W. Afzal, and Sh. Hasan Ameerjan. 2017.
Towards Execution Time Prediction for Test Cases from Test Specification. In
43rd Euromicro Conference on Software Engineering and Advanced Applications.
http://www.es.mdh.se/publications/4758-

S. Tahvili, M. Saadatmand, S. Larsson, W. Afzal, M. Bohlin, and D.Sundmark. 2016.
Dynamic Integration Test Selection Based on Test Case Dependencies. In The
11th Workshop on Testing: Academia-Industry Collaboration, Practice and Research
Techniques. http://www.es.mdh.se/publications/4298-

RET’18, June 2, Gothenburg, Sweden

https://doi.org/10.1016/j.procs.2015.04.178
http://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1145/2931037.2931041
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/BF01263048
http://www.es.mdh.se/publications/4438-
http://www.es.mdh.se/publications/4758-
http://www.es.mdh.se/publications/4298-

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Semantic-Dependency Model
	4 The Approach
	4.1 Document Embedding Using Doc2Vec
	4.2 Clustering with HDBSCAN
	4.3 Cluster-Based Test Scheduling Strategies

	5 Proof of Concept
	5.1 Case Study Report

	6 Discussion & Future Extensions
	7 Summary & Conclusion
	References

