
How to Make Use of Empirical Knowledge about
Tester’s Information Needs

Anne Hess, Joerg Doerr
Fraunhofer IESE

Kaiserslautern, Germany
{anne.hess, joerg.doerr} @iese.fraunhofer.de

Norbert Seyff
University of Applied Sciences and Arts Northwestern

Switzerland and University of Zurich, Switzerland
norbert.seyff@fhnw.ch

Abstract— Software requirements specifications (SRS) serve as
a source of communication and information for a variety of roles
involved in development activities. From the viewpoint of these
SRS consumers, which includes testers as one of the key customers,
the analysis of requirements specifications is often frustrating as it
is time consuming and often requiring a lot of cognitive effort due
to the increasing complexity of the documented information.
Filtering the large amount of information by generating views that
fit role-specific demands of SRS consumers is a promising solution
approach for tackling this problem. This paper discusses concepts
and key functionalities of an initial tool implementation of our
proposed solution that is based on detailed knowledge about
information needs that we gained in a series of empirical studies.
Furthermore, we present potential usage scenarios illustrating its
application in industry from the viewpoint of a tester.

Index Terms—requirements specification, role-specific views,
tool, usage scenarios, testers

I. INTRODUCTION

Software engineering (SE) projects are inherently
cooperative and require software engineers (who may have
specific roles) to exchange information and coordinate their
efforts [1]. A shared understanding regarding the requirements
of stakeholders that are to be supported by a software system is
therefore required. Requirements engineering (RE) supports the
specification of requirements with the help of different
requirements artifacts. These artifacts can include information
both in the form of natural language and conceptual models
using different notations [2]. For example, detailed information
about supported stakeholders can be specified using textual role
descriptions [2] or personas [3]; information about goals can be
specified using goal models ([2][4][5]); and interactions
between the system and actors in its environment can be
specified by means of textual specifications of use cases [2].

All these artifacts are typically consolidated, structured, and
maintained in software requirements specifications (SRS),
which often comprise a very large number of such artifacts due
to the increasing complexity of software systems.

Such complex SRS serve as an important source of
knowledge to a variety of SRS consumers – in the following
referred to as “artifact stakeholders” – who are involved in
subsequent SE activities like testing or architecture design.

Thus, the artifact stakeholders such as testers need to actively
work with the SRS and continuously analyze the documented

artifacts in order to adequately perform their role-specific tasks
e.g., plan, prepare and run system tests based on the SRS.

Results obtained by interviews, analyzing industrial RE
practices [6] and by assessing industrial projects with the RE
Assessment Guide [7] have revealed that the usage and analysis
of SRS is often difficult and time-consuming for artifact
stakeholders. Besides the aforementioned complexity, this
observation might be attributed to insufficient quality of the
artifacts [8] and particularly to the fact that the creation of SRS
tailored to role-specific information needs is not sufficiently
supported by current RE approaches and tools [9]

That means that from the viewpoint of a particular artifact
stakeholder like a tester, important requirements artifacts might
be spread over different sections in a given SRS, be delivered
too late, be specified on an inappropriate level of detail, or even
be missing. Or the SRS might include a variety of requirements
artifacts that are not important for accomplishing particular test-
specific tasks such as preparing and running system tests [9].

A promising approach for handling the aforementioned
problems seems to be a solution that provides each artifact
stakeholder with predefined views on a given SRS that fit their
specific information demands [9]. We claim that such a solution
is highly relevant for industry - specifically for teams
implementing large-scale projects where there are a large
number of roles involved, each with unique information needs.

In this context, an insufficient satisfaction of these
information needs is critical: It may lead to delays and frustration
in subsequent SE activities, which could lead to disregard or
ignorance of SRS by artifact stakeholders and ultimately to
costly changes, expectation failures, budget or time overruns [9].

The remainder of paper is structured as follows: In Section
II, we introduce concepts and key functionalities of our current
tool to provide the specific views. Section III introduces four
usage scenarios that reflect typical tool applications in industry
from the viewpoint of a tester. The paper concludes with a
summary and outlook on future work in section IV.

II. TOOL CONCEPT AND IMPLEMENTATION

We realized our initial solution [15] as extensions of
Microsoft Excel®, a common tool that is often used in practical
settings in order to create SRS. All implemented functionalities
(macros) have been encapsulated as add-ins that can easily be
imported and activated in any Microsoft Excel® application.

A. Background

To generate suitable views that fit role-specific demands, we
claim that detailed, empirically valid knowledge about role-
specific information needs is required first. In previously
published work [9] [11], we discussed first lessons learned and
initial results regarding such role-specific information needs.
Since then we have further supplemented and refined these
initial results by conducting a series of empirical studies that
investigated priorities of a set of requirements artifacts from the
viewpoint of testers, software architects and usability engineers.

Please note that a further and detailed discussion of the
empirical work is not in the scope of this paper. However, we
would like to discuss the requirements artefacts which were the
basis for our investigation.

We followed the task-oriented RE approach (TORE) [12] that
proposes the following requirements artifacts:

Descriptions of stakeholders that capture relevant
information and characteristics about stakeholders who are to be
supported by or have an influence on the system to be built.

Descriptions of project goals / stakeholder goals that are to
be fulfilled by the system to be built. These goal descriptions
typically include and refine the vision of the system.

Descriptions of as-is situations that illustrate current
situations without the system to be built (e.g., current problems
that motivate the need for a new system; how supported business
processes are currently being performed).

Descriptions of to-be situations that illustrate the situation in
the future with the system (e.g., how supported business
processes will be performed with the system to be built).

Descriptions of the system context that define the system’s
environment (e.g., users, external systems) including an
overview on functionalities that the system offers to it.

Descriptions of interactions that describe how the system
interacts with entities in its environment (e.g., users).

Descriptions of system functions that specify input, internal
behavior, and output of system functionalities.

Descriptions of quality requirements that specify desired
qualities (non-functional requirements) of the system to be built
(e.g., regarding performance, availability, dependability).

Descriptions of technical constraints that limit the solution
space beyond what is necessary for meeting the requirements.

B. Tool Solution Concepts

The overall tool solution concept comprises an SRS template
including artifact templates as well as priority tags & filter rules
that define the various role-specific views. These concepts are
described in more detail in the following.

1) Templates: The SRS template structures the SRS
document into different (sub)sections, as it is done in standards
such as IEEE 830-1998 [10].

In order to specify requirements artifacts in detail, predefined
artifact templates are provided in each of the subsections of the
SRS template. These artifact templates represent the TORE
requirements artifacts that have been investigated in the
empirical studies (see Section II.A).

Figure 1 illustrates an example artifact template which
supports the specification of interactions between the system and
its actors in the form of textual use case descriptions.

Fig. 1. Excerpt of SRS Template Visualizing a Use Case Template (as an example Artifact Template), Priority Tags (Column A). and Commands for

Generating Role-specific Views (Menu)

2) Priority Tags and Filter Rules: Each artifact template and
its description attributes are tagged with so-called “priority
tags” (see column A in Figure 1). In the case of the example,
the artifact template is tagged with A2, U2, and T1. These
priority tags correspond with the priority of a particular
requirements artifact from the viewpoint of software architects
(A), usability engineers (U), and testers (T) that we calculated
based on the empirical data gained.

There are three classifications of artifacts and corresponding
priority tags for each of the three perspectives:

High priority artifacts include key information for the artifact
stakeholders that is critical to fulfill their role-specific tasks.
These artifacts have to be specified timely and precisely. This
classification is represented by the tags A1, U1, and T1 for the
three artifact stakeholder groups.

Lower priority artifacts include relevant information for the
artifact stakeholders that is, in contrast to high priority artifacts,
less critical. That is, the artifact stakeholders could also do their
tasks based on high-level descriptions of these artifacts (i.e.,
diagrams without additional textual details). This classification
is represented by the tags A2, U2, and T2 for the three artifact
stakeholder groups.

Unimportant artifacts do not include relevant information for
the artifact stakeholders. This classification is represented by the
tags A3, U3, and T3.

The descriptions of use cases for example (see Figure 1), is
of high priority for testers (T1) and of lower priority for software
architects and usability engineers (A2, U2).

Based on the priority tags, a set of filter rules was
implemented to finally generate role-specific views. In our tool,
we used the filter functionalities provided by Microsoft Excel®
that allow reducing the number of displayed rows in a sheet
based on certain cell values in a given column.

To define the filter rules for the views, we used the values of
the priority tags in column A (see Figure 1). For example, the
execution of the filter rule “Filter based on T1” enables that the
number of displayed rows in the SRS is reduced to the number
of rows that contain the value (priority tag) “T1” in column A.

Thus, the execution of this filter rule creates a view that
displays only artifacts that are of high priority for testers (T1).

C. Role-Specific Views

According to the aforementioned scheme, we implemented
various filter rules in form of macros that can be executed via
the different menu items in the menu (Figure 1). The tool offers
the following role-specific views:

TOP Artifacts: displays only artifacts that are of high priority
for the corresponding role (i.e., artifacts that are tagged with A1,
U1, and T1 respectively)

IMPORTANT Artifacts: displays artifacts that are of lower
priority but still important to the corresponding role (i.e.,
artifacts tagged with A2, U2, and T2)

VALIDATE Artifacts: This view is intended to support
validation activities of the SRS for the purpose of quality
assurance following e.g. perspective-based techniques like [2].
Thus, this view displays all artifacts that belong to both the view

TOP Artifacts and IMPORTANT Artifacts (i.e., artifacts tagged
with A1 or A2, U1 or U2, and T1 or T2).

Besides the aforementioned priority-based views, our
current implementation also offers additional views to the users
(see menu bar in Figure 1) that are intended to reduce the
complexity of displayed information in the SRS. These views
were also realized in the form of filter rules based on predefined
tags in column A and comprise:

Project Overview: displays artifacts that allow getting a good
overview of the project. This includes general project
descriptions (customer, timeline, budget), motivation,
stakeholders, vision, as well as high-level descriptions of the
system context (such as use case diagrams [2]).

Document Info: displays meta-information about the SRS.
This includes authors, version number, change history, etc.
Appendix: displays information specified in the Appendix of the
SRS. This includes artifacts such as glossaries.

ALL Artifacts (incl. Attributes): displays all requirements
artifacts including meta-information such as author, version,
source, cross-references, and validation status.

ALL Artifacts (no Attributes): this view displays all
requirements artifacts but without meta-information as it might
not always be relevant for the artifact stakeholders. Thus, this
alterative might be helpful to additionally handle the complexity
of information specified in the SRS.

III. USAGE SCENARIOS

In the following, we present three scenarios that illustrate
envisioned applications of our proposed solution in industrial
project settings, particularly from the perspective of testers.

Usage Scenario 1: Reduce the complexity of SRS to support
(continuous) document analysis. Once a stable version of
requirements artifacts has been documented in the SRS, the
testers typically analyze the documented artifacts to perform
their role-specific tasks. Thus, a tester might first get an
overview of the project (via view Project Overview) which
provides him with a condensed summary of project goals,
relevant stakeholders and the system scope. Afterwards he might
analyze the most important artifacts for performing his main
tasks (preparing and running system tests) via the view TOP
Artifacts that - based on the empirical data - comprises detailed
descriptions of interactions in form of use cases (see template in
Figure 1). During planning activities, he might also refer to
further important information via the view IMPORTANT
Artifacts which comprises e.g., information helping to
understand the relation between use cases and system functions.
During this document analysis activities, (rather) unimportant
information for the tester (according to the empirical data, e.g.,
stakeholder characteristics) is hidden but can be accessed
anytime via the views ALL Artifacts or Project Overview.

We conclude that with views the typically large amount of
specified information can be filtered in order to reduce time and
cognitive effort that might otherwise be spent on searching.

The presented scenario assumes that a waterfall-like
approach is applied i.e., the SRS is completed before subsequent
development starts. However, also iterative software
development processes (e.g., RUP [13]) can be supported by

views. For example, a tester might have a look at initial drafts of
use cases in order to plan testing activities. Later on, he might
revisit the updated use cases to specify detailed test cases.

Thus, the testers can also benefit in such continuous
document analysis activities, as they do not need to browse
through the complete SRS every time they want to check for an
update. Instead, they can focus on updates of important artifacts.

Usage Scenario 2: Align the elicitation and documentation
of requirements artifacts with role-specific needs. With the help
of the various views, requirements engineers can align their
elicitation and documentation activities with role-specific needs.

This could be beneficial in iterative project settings where
on-time delivery of important information for subsequent
development activities is critical for project success [7]. Also
DevOps that positively effects quality assurance performance
could benefit as this framework is supported by a culture of
collaboration, automation, and information sharing [14].

Usage Scenario 3: Improve communication and quality of
SRS. Also the collaboration and communication between
requirements engineers and testers can benefit from our solution.
The views – particularly the underlying knowledge about role-
specific needs - could enable the requirements engineer to
directly contact and include testers already during elicitation and
documentation of artifacts that are (highly) relevant for testers.

This could enhance communication in the project and
improve the quality of the SRS already during its creation. This
might also reduce solving open issues between testers regarding
artifacts after they are delivered by the requirements engineer.

Finally, once an initial SRS version has been created, the
requirements engineer may initiate review activities of the SRS
(e.g., following perspective-based techniques [2]). The tester
could generate a selective role-specific view (via VALIDATE
Artifacts) and review the artifacts contained in this view
according to a predefined review process. The review might be
more efficient, as unimportant information for a tester is
automatically hidden and does not have to be reviewed.

IV. SUMMARY AND FUTURE WORK

With the presented work we have introduced practical
applications of a tool that generates role-specific views on a
given SRS based on empirical data [15]. We claim that such a
solution has the potential to support especially large
development teams implementing large-scale projects to handle
the complexity of SRS in an efficient manner.

We implemented an initial tool version as extensions of
Microsoft Excel® with the overall goal of using this tool in case
studies and experiments to gain insights about possible benefits
and limitations of our solution idea. Furthermore, is would also
be possible to apply our solution in requirements management
tools that provide filter options based on attributes. However, we
consider the underlying empirical knowledge about role-specific
information needs as a major contribution to industry.

An initial case study has revealed that role-specific views
have the potential to support both artifact stakeholders and
requirements engineers in typical usage scenarios as described
in this paper. To mitigate current limitations (such as students as
participants, limited system scope with limited numbers of

artifacts) and increase the validity of these initial results, we will
continue with further evaluations in industrial settings. This will
also include research on factors that might influence information
needs (such as background, personalities) and how to enable
artifact stakeholders to stay “in control” and not have the feeling
that they are missing information if the tool hides information
that they believe might be important for them.

REFERENCES

[1] J. Whitehead, “Collaboration in software engineering: a
roadmap,” Future of Software Engineering, 2007, FOSE '07,
pp.214–225, 23-25 May 2007.

[2] K. Pohl and C. Rupp, Requirements engineering fundamentals: a
study guide for the certified professional for requirements
engineering exam-foundation level-IREB compliant. Rocky
Nook, Inc., 2011.

[3] A. Cooper, The Inmates are Running the Asylum. Macmillan
Publishing Co., Inc., Indianapolis, USA, 1999.

[4] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social
Modeling for Requirements Engineering. The MIT Press, 2011.

[5] A. Van Lamsweerde and E. Letier. “From object orientation to
goal orientation: a paradigm shift for requirements engineering,”
Radical Innovations of Software and Systems Engineering in the
Future. Springer Berlin Heidelberg, 2004, pp.325–340.

[6] S. Adam, J. Doerr, and M. Eisenbarth, “Lessons learned from best
practice-oriented process improvement in requirements
engineering – a glance into current industrial RE application,”
REET09, 2009.

[7] D. Rapp, A. Hess, N. Seyff, P. Sporri, E. Fuchs, and M. Glinz,
“Lightweight requirements engineering assessments in software
projects”, In Proc. 22nd IEEE Int. Requirements Engineering
Conference (RE), 2014, pp.354–363, 25-29 Aug. 2014.

[8] H. Femmer, J. Mund, and D. Méndez Fernández, “It's the
activities, stupid!: a new perspective on RE quality”, 2nd
International Workshop on Requirements Engineering and
Testing (RET ’15), 2015, pp. 13-19.

[9] A. Gross1, J. Doerr, “What you need is what you get!: the vision
of view-based requirements specifications,” In Proc. 20th IEEE
International Requirements Engineering Conference (RE), 2012,
pp.171–180, 24-28 Sept. 2012. (1 same author as A. Hess)

[10] IEEE Guide for Information Technology – System Definition –
Concept of Operations (ConOps) Document. IEEE Standard
1362-1998, 1998.

[11] A. Gross2 and J. Doerr, “What do software architects expect from
requirements specifications? results of initial explorative studies,”
1st International Workshop on the Twin Peaks of Requirements
and Architecture”, 2012, pp.41–45 (2 same author as A. Hess).

[12] S. Adam, N. Riegel, J. Doerr, “TORE - a framework for
systematic requirements development in information systems,”
Requirements Engineering Magazine, Issue 2014 – 04, http://re-
magazine.ireb.org/issues/2014-4-steady-flight/tore/ (last access
June 19th 2017).

[13] P. Kruchten The rational unified process: an introduction. 2nd
edition. Addison-Wesley, Boston, 2000.

[14] F. Erich, C. Amrit, M. Daneva, “A mapping study on cooperation
between information system development and operations,”
PROFES 2014. LNCS, vol. 8892, 2014, pp. 277–280.

[15] Downloadlink https://oc.iese.de/index.php/s/21Rl1jntvE9oZQu

