
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Testing Quality Requirements of a System-of-Systems in

the Public Sector - Challenges and Potential Remedies

Jacob Larsson

Capgemini,

Växjö, Sweden

jacob.larsson@capgemini.com

Markus Borg, Thomas Olsson

SICS Swedish ICT AB,

Lund, Sweden

{markus.borg, thomas.olsson}@sics.se

Abstract. Quality requirements is a difficult concept in software projects, and

testing software qualities is a well-known challenge. Without proper manage-

ment of quality requirements, there is an increased risk that the software prod-

uct under development will not meet the expectations of its future users. In this

paper, we share experiences from testing quality requirements when developing

a large system-of-systems in the public sector in Sweden. We complement the

experience reporting by analyzing documents from the case under study. As a

final step, we match the identified challenges with solution proposals from the

literature. We report five main challenges covering inadequate requirements

engineering and disconnected test managers. Finally, we match the challenges

to solutions proposed in the scientific literature, including integrated require-

ments engineering, the twin peaks model, virtual plumblines, the QUPER mod-

el, and architecturally significant requirements. Our experiences are valuable to

other large development projects struggling with testing of quality require-

ments. Furthermore, the report could be used by as input to process improve-

ment activities in the case under study.

Keywords: Experience report, quality requirements, software testing, system-

of-systems, document analysis.

1 Introduction

The importance of software is ever-growing in our modern society, as more and more

domains depend on software-intensive systems. In a society increasingly relying on

software, the quality aspects of the various software systems become critical [5]. Test-

ing Quality Requirements (QR) is known to be difficult in large software engineering

projects. In a large study on challenges related to alignment of Requirements Engi-

neering and Testing (RET), Bjarnason et al. report that three out of six studied com-

panies struggle with verifying QRs [8]. Several other researchers also acknowledge

the importance of managing QRs [17, 21], and have called for additional research [4,

16]. An understanding of software quality should permeate the entire development

process [27]. Quality aspects, sometimes referred to as “-ilities”, are typically ex-

pressed as QRs (a.k.a. non-functional requirements, in contrast to Functional Re-

quirements (FR)) as part of a project’s Requirements Engineering (RE). Example

categories of QRs according to ISO/IEC 25010 include reliability, operability, and

maintainability [26].

In our previous work on reported general challenges of RET alignment in the pub-

lic sector [28], verifying quality requirements was listed as one of the major challeng-

es. The discussion on QRs was however comparatively short, with the overall conclu-

sion being “many quality aspects cannot be assessed until the system is in operation”.

We now return to the same project 1.5 years later and report experiences from testing

QRs of a system that is now partly in operation. Consequently, the current paper con-

stitutes a follow-up of our previous work, i.e., we return to the same development

project at a governmental agency in Sweden: a major integration effort with the goal

to establish a System-of-Systems (SoS) for managing EU grants. In this paper, we

further strengthen the validity of our conclusions by complementing the experiences

reported by archival analysis of requirements documentation. Finally, our report re-

sponds to a recent national call for more research on SoS in Sweden [3].

Our main contribution is to report five major challenges in verifying QRs in the

case under study, namely: 1) changing RE documentation, 2) test managers’ need of

domain understanding, QRs are neither 3) quantified nor 4) prioritized frequently

enough, and 5) simulation of complex operational states in a test environment. We

also propose solutions based on the research literature for the five challenges, includ-

ing improved commination between requirements engineers, architects and test man-

agers (i.e., extending the Cleland-Huang et al.’s “twin peaks” model [11] with the test

perspective), and early identification of “test significant QRs” (in line with work on

architecturally significant requirements by Chen et al. [10]).

The paper is structured as follows: Section 2 introduces previous research on QRs,

and particularly related work on testing QRs. Section 3 describes the case company

and the relevant development processes applied in the project under study. Section 4

presents the research method and the limitations of our work. Section 5 reports our

results and our corresponding interpretations. Finally, Section 6 concludes our paper

by summarizing the main takeaways.

2 Background and related work

While management of QRs is known to play a crucial role in large software engineer-

ing projects, the RE research community has not agreed on a single definition [14]. In

this paper, we rely on the definition “QRs describe the non-behavioral aspects of a

system, capturing the properties and constraints under which a system must operate”.

The remainder of this section presents key research on QRs, as well as reported chal-

lenges related to both their specification and verification.

2.1 Quality requirements and quality models

Several researchers highlight the importance of QRs during software product devel-

opment. Simply implementing all functional requirements is not enough to ensure a

successful product; Disregarding QRs might lead to a product that is too difficult to

use or too expensive to maintain [21]. Moreover, poor management of QRs might

lead to project overruns and increased time-to-market [17]. Berntsson Svensson ar-

gues that QRs are particularly important to market-driven organizations that release

products to an open consumer market [4]. Although the importance of QRs is general-

ly acknowledged, Chung and do Prado report that RE research is dominated by func-

tional requirements [14], whereas Ameller et al. [1] report that both FR and QR are

considered equally important by architects.

Software quality models have been developed to support identification of QRs and

to help establish control criteria for quality assurance. Two of the most established

models are ISO/IEC 25010 [26] (the successor of ISO/IEC 9126) and FURPS+ (a

Hewlett Packard adaptation of the original FURPS model [25]), see Table 1. ISO/IEC

25010 composes software product quality into eight characteristics: functional suita-

bility, performance efficiency, compatibility, usability, reliability, security, maintain-

ability, and portability. Each characteristic is further divided into sub-characteristics.

FURPS+ is an acronym representing the quality aspects covered by the model: func-

tionality, usability, reliability, performance, and supportability. The ‘+’ was appended

to the original FURPS model to highlight additional quality aspects, and constraints

on the product, e.g., physical requirements or implementation requirements.

Previous work highlights QRs as among the most challenging aspects to manage

during software projects. Moreover, Chung et al. report that development organiza-

tions often do not properly acknowledge the significance of QRs [15]. Several re-

searchers try to express the overall challenges of QRs. For example, Glinz claims that

the mains issues with QRs originate in their definition, classifications, and representa-

tion [24]. Chung et al. instead argues that the three biggest challenges with QR origi-

nates in their nature of being subjective, relative, and interacting [15].

A number of studies point out more specific challenges of QRs. Ernst and My-

lopoulus report that software quality aspects are often first considered at late stages of

the development lifecycle, typically assessed by a set of measures applied to the final

product [23]. Also Cleland-Huang et al. notice that QRs typically are discovered late

in software development projects, and often in an ad hoc fashion [13]. Borg et al.

identified a number of QR challenges in a two-unit case study in Sweden [9]. The

main finding was again that QRs are discovered late, if they were discovered at all.

Furthermore, the authors found that the developers in the two cases under study

struggled with QR specification; QRs are often specified in vague terms that cannot

be verified. Berntsson Svensson [4] summarizes the main challenges of QRs present-

ed in the literature as: 1) QRs are poorly understood, 2) QRs are stated informally, 3)

QRs are often contradicting, and 4) QRs are hard to validate.

ISO/IEC 25010 FURPS+

Functional

suitability

Completeness, Correct-

ness, Appropriateness

 Func-

tionality

Capability, Reusability,

Security

Perfor-

mance

efficiency

Time-behaviour, Re-

source utilization, Ca-

pacity

 Usability Aesthetics, consistency,

responsiveness etc.

Compati-

bility

Co-existence, Interop-

erability

 Reliabil-

ity

Availability, Failure extent,

Predictability etc.

Usability Recognizability,

Learnability, Aesthetics

etc.

 Perfor-

mance

Speed, Efficiency,

Throughput, Scalability

etc.

Reliability Maturity, Availability,

Fault tolerance, Recov-

erability

 Support-

ability

Testability, Flexibility,

Installability etc.

Security Confidentiality, Integri-

ty, Accountability etc.

 + Design, implementation,

interface, physical re-

quirements

Maintain-

ability

Modularity, Reuseabil-

ity, Testability etc.

Portability Adaptability, Installa-

bility, Replaceability

Table 1. Side by side comparison of ISO/IEC 25010 and FURPS+.

2.2 Verifying quality requirements

Even in organizations that acknowledge the value of QRs, testing them is often a

problem. Berntsson Svensson et al. report in an interview study with 11 companies

that practitioners frequently fail to specify QRs in quantifiable formats that can be

verified by a testing organization [5]. In an in-depth study of a specific requirements

specification from one of the companies, Berntsson Svensson et al. find that 56% of

the QRs are expressed with a quantified quality level [6]. The authors note however,

that quantification is not suitable for all types of QRs, e.g., security. Shahrokni and

Feldt address testing of QRs in a safety-critical context (mainly software robustness).

They analyze three requirements specifications at a case company, and show that the

fraction of quantified QRs varies between 5% and 45% [34]. Also, they report that the

number of ambiguous QRs are overrepresented in the set of non-quantified QRs.

In a multi-unit case study by Bjarnason et al., testing QRs is highlighted as one of

16 challenges in RET alignment [8]. Some of the reported root causes confirm find-

ings from previous research, including: 1) specification of testable QRs, and 2) sub-

jectively judging whether an QR has passed or not. Our previous paper confirmed that

testing QRs is a major RET challenge also in the current case [28], primarily since

most quality aspects cannot be assessed until the full system under development is in

operation.

Several researchers have presented approaches to support testing QRs. The

QUPER model helps development organizations set appropriate quality targets in a

market-driven context, and Berntsson Svensson and Regnell proposed adding also test

results to the model to support verification of QRs [7]. Shahrokni and Feldt developed

the framework ROAST [32] to support elicitation of testable QRs. ROAST supports

refinement of QRs from high level goals to a set of testable requirements, but the

framework focuses on robustness requirements and is not applicable to QRs in gen-

eral. Along the same lines, the same Shahrokni and Feldt also presented RobusTest,

another technical framework supporting automated testing of a system’s robustness

properties by generating JUnit test cases [33]. Cleland-Huang et al. introduced a con-

cept of “virtual plumblines” to monitor how a system conforms to quality goals

throughout software evolution [12]. By specifying the plumblines as quality assess-

ment models, carefully distributed in the software system, they could then be reevalu-

ated when a system is changed to verify that quality has not deteriorated.

3 Case description

We study a large software project at a governmental agency in Sweden. The first au-

thor has extensive experience as a consultant at the agency, as also reported in our

publication [28]. In this paper we return to the same case, but particularly focus on

QRs. In line with the previous publication, we refer to the governmental agency as

GOV. GOV administrates subsidies from the European Union within a specific area.

The software development organization within GOV develops a new customized

platform, offering end-users improved subsidies management using a combination of

cloud solutions.

The new platform will combine several existing systems, integrating all steps of

the application process into a system-of-systems [3], from the individual request to

the final outgoing payment. The project has the policy to use open source software

when feasible, utilizing solutions such as Java, JBoss, and PostgreSQL. The runtime

environment for several parts of the SoS is Red Hat Linux.

Figure 1 shows an overview of the integration platform under development. In-

stead of having all 12 partaking systems communicate directly with each other (a) in

Figure 1, an integration platform approach is used (b), which is detailed in (c). Each

of the 12 systems, as well as each integration between a system and the integration

platform, are specified in a separate requirements document.

Two of the most important quality attributes for the new SoS are interoperability

and performance. The SoS comprises multiple dependencies, and most external inter-

faces will be connected through a common integration platform (cf. b) in Figure 1).

Reliable integration with services that provide data is essential, thus providing high

quality APIs is an explicit requirement on the SoS. Also, as the number of future users

is high, approximately 500 simultaneous users during the peak periods, the network

performance is critical. Additionally, the data validations can sometimes require ex-

tensive resources, which can affect the performance of the IS, e.g., response times.

We define two key stakeholders of the SoS. End users are domain experts working

at either GOV or county administrative boards across Sweden. They have detailed

knowledge about the application process and assist clients. Clients (i.e., individuals

and enterprises active in the sector) use the SoS to apply for subsidies. Furthermore,

we define the business as the organization at GOV that will use the SoS to fulfil their

operational needs. The IT department of GOV employs business analysts, i.e., re-

quirements engineers responsible for elicitation and specification of the requirements,

as well as software developers and system architects.

Figure 1. A principle overview of the integration platform.

Analogous to other governmental agencies in Sweden, new development as well

as operations at GOV is governed by framework agreements with subcontractors.

Several subcontractors develop a large fraction of the SoS together, and also perform

RE and testing activities. The development organization employs approximately 100

development engineers in total. Development of the new SoS is organized as 12 dif-

ferent projects, reflecting the number of systems to be integrated, employing roughly

10-20 engineers per project.

The development process at GOV is based on the Rational Unified Process com-

plemented by agile practices expressed as six goals: 1) End users and the business

work closely together, 2) High quality through continuous integration and automated

testing, 3) Incremental development enables frequent acceptance testing, 4) Continu-

ous delivery of system documentation, 5) Development teams are cross-functional

with integrated competences, and 6) Retrospective meetings at every sprint planning.

GOV uses the FURPS+ model to elicit and specify QR [25].

Planning within the development project at GOV is performed on three different

levels. Between 6-12 months, strategic planning, which involves resource allocation

and specification of dates for integration, referred to as milestones. Operational plan-

ning (planning which covers more than 3 sprints). Finally, sprint planning (2 weeks)

deals with detailed planning of what is to be delivered in the sprint. Further details on

the development practices at GOV are reported in our previous paper [28].

4 Research methodology

This paper primarily documents experiences from the first author. However, we com-

plement the experiences with an analysis of documents at GOV.

4.1 Experiences of the First Author

All experiences reported in this paper belong to the first author, and do not necessarily

reflect the views of neither Capgemini nor GOV. Larsson is a software engineering

consultant specializing in testing, especially test processes and test management. He

has worked in software development projects in the public sector for more than a

decade in Sweden and Denmark, with extensive experience of public sector develop-

ment of large information systems. Furthermore, he has consulted in RE, mainly re-

quirements elicitation and analysis. Note however that the experiences shared in this

paper mainly reflect the perspective of a test manager.

4.2 Document analysis

The archival analysis of this work is dominated by qualitative analysis. The second

and third authors independently analyzed project documentation at GOV to find sup-

port for the experiences reported by the first author. The analysis of GOV’s archival

data, also referred to as content analysis, was conducted on a subset of the available

project documentation. We studied all available documents describing the develop-

ment process at GOV, and selected one of the twelve systems in the SoS for in-depth

analysis of all parts and requirements. This is complemented by a light-weight analy-

sis of three additional systems where the requirements are sampled. The emphasis on

what is in the project documents rather than how they were created is inspired with

the concept of artifact-based RE as described by Méndez Fernández and Pen-

zenstadler [30].

4.3 Threats to validity

The primary purpose of this paper is to present the first author’s personal experiences.

Consequently, our paper is subject to the general limitations of experience reports;

Generalization from our findings is uncertain. While we do not discuss extrapolating

beyond the case under study, it is relevant to question how general the experiences of

the first author are among his co-workers. Other engineers at GOV might highlight

other challenges, and also prioritize them differently. However, we increase the valid-

ity of our findings by independent data source triangulation, i.e., the second and third

authors performed document analysis to identify supporting evidence in GOV’s pro-

ject documentation.

5 Results and Discussion

This section first presents findings from the archival analysis, and then reports the

first author’s experiences from testing QRs at GOV.

5.1 QR Information Structure and Information Flow

The development project under study encompasses an extensive document structure.

Documents at GOV are hierarchically organized in overall development process

guidelines and project documentation for the individual systems. The general quality

of the documents is high, and GOV adheres to good practices such as careful change

management and consistent templates. All documentation is in Swedish.

Figure 2 shows an overview of the information flow related to QRs at GOV, from

RE to the left, to testing at the right side. First, the business analysts create the Quality

Requirement Baseline (QRB), an overview of the required system qualities, and the

use cases based on 1) the European Union and Swedish legislation, 2) the overall

business model at GOV, and 3) various process models describing high-level usage of

the system under development. The system architects create the system’s architecture

specification, complemented by a set of Interface Descriptions (IDs) for the relevant

inter-system collaboration. The output from the business analysts and system archi-

tects is used as input for the software developers (cf. the lower part of the figure, not

in focus of this study). Apart from the developed software system (cf. the white box),

the test manager uses the QRB and IDs as direct input for testing QRs. The use cases

are also relevant; the use cases must be understood to setup a realistic test environ-

ment, i.e., most QRs cannot be tested in isolation, rather the test manager needs to

establish representative test scenarios in which to verify the QRs.

Figure 2. The information flow between RE and testing. Gray documents contain

QRs. Solid arrows show direct usage, the dashed arrow shows indirect usage. Based

on Stapel and Schneider’s work on information flow [35].

As illustrated in Figure 2, two artifact types constitute the key information flow of

QRs from RE to testing. First, the Quality Requirements Baseline (QRB) is a single

document that encompasses the overall qualities of the integrated SoS, i.e., the QRB

is the quality centerpiece from an RE perspective. It is structured according to

FURPS+, with sections for each corresponding category (see Section 2.1). Examples

of system qualities specified in the QRB include: 1) acceptable downtime, 2) recover-

ability and startup performance, 3) response times, and 4) the number of simultaneous

users and actions. Second, the Interface Descriptions (ID) refer to a set of documents

specifying how the individual systems shall interact within the SoS. Each interface

description specifies the behavior of both the producing and consuming end, as well

as the transmitted messages. Examples of QRs for the producers include: 1) size and

complexity of the messages, and 2) security. Examples of QRs for the consumers

include: computational performance, e.g., 1) number of messages processed per sec-

ond, and 2) time behavior, e.g., time to validate received data.

As a majority of GOV’s QRs are specified in the QRB and the IDs, we restrict the

discussion in the paper to these two artifact types. This focus mirrors the approach

taken by test managers when planning verification of GOV’s quality goals. There are

about the same number of FRs as there are QRs in the QRB and IDs (note that the ‘F’

in FURPS+ represents “Functionality”). The FRs are typically high-level textual re-

quirements in natural language, e.g. “The system should handle payments of environ-

mental support”. The QRs are written in a similar manner, e.g., “Response time

should not exceed 1 second when searching and registering information on a particu-

lar issue”. While all FURPS+ categories are represented in the QRB usability and

implementation/architectural requirements are the biggest (i.e., ‘U’ and ‘+’ in

FURPS+). The level of QR quantification varies depending on type, as reported also

in previous work [6]. The reliability and efficiency requirements (i.e., ‘R’ and ‘P’ in

FURPS+) are often quantified with an explicit target measure, but the other categories

are expressed in less precise terms. For the IDs, there is a focus on efficiency and

reliability (i.e., ‘E’ and R in FURPS+). Interestingly, despite specifying interaction

within a SoS of information systems, the amount of security requirements is low (se-

curity is part of the ‘F’ in FURPS+).

5.2 Experienced challenges in testing quality requirements

The QRB, the central quality document, provides an overall structure to work with

QRs at GOV. The categorization of QRs into FURPS+ helps the test managers to

identify the key QRs of each category (e.g., usability and reliability) and to plan the

verification activities accordingly. Still, testing QRs is far from trivial at GOV.

The IDs, specifying integration within the SoS, are the fundamental artifacts to

verify QRs related to the data flows. Early specification of data flows enables early

planning of QR verification, but requires cooperation between the system architects

and test managers. While some of the IDs reached a stable state early on in the pro-

ject, others are stabilized later in the process. Hence, as the requirements change, the

test plan must be updated to reflect the changes.

Typically, the IDs contain a subset of QR from the QRB, but elaborated for the

specific interface. Not all QR from the QRB are applicable though, e.g., usability (as

the IDs do not describe any user interfaces). On the other hand, other QRs become

more important, e.g., efficiency (as the IDs are specifying integration into a SoS, cov-

ering network throughput, response times etc.).

Challenge 1: The RE documents evolve while testing is planned and ongoing.

Challenge 2: Test managers need to understand the business.

Challenge 3: QRs are not quantified.

Challenge 4: QRs are not prioritized.

Challenge 5: Hard to simulate all operational states.

Table 2. Main challenges (Ch 1-5) in testing quality requirements at GOV.

Table 2 summarizes our experienced challenges of testing QRs. First, the QRB and

the ID are repeatedly updated during development, thus the test managers do not

know when the artifact is stable. As a consequence, early test plans might target the

wrong quality goals, or miss out on verifying entire quality aspects. This confirms

previous research, stating that QRs are often discovered late during development [13,

23]. The challenge involved in awaiting a sufficient set of QRs (i.e., enough require-

ments to enable test planning) also resonates with previous research on dependencies

among QRs [4]. Furthermore, the documents are not always properly maintained, i.e.,

the artifacts do not necessarily reflect the latest quality targets set by for instance the

business analysts or the system architect. Inadequate maintenance of requirements

documents was also reported as a RET challenge by Bjarnason et al. [8].

Second, to plan the verification, the test managers must have a broad understand-

ing of the business. The QRs can typically not be interpreted in isolation. Rather, the

test manager must understand the domain and possess insights in the data flow

through the SoS. This is further complicated by the fact that the QRs are not specified

in their context. Rather, they are written as part of the QRB or the ID and in a struc-

ture related to the type of requirement rather than their relation to the other require-

ments and parts of the system. Consequently, the testers must identify and understand

the context themselves. In addition, the importance of domain knowledge to software

testing is well-known in the literature [20]. At GOV, this challenge is further ampli-

fied by the high proportion of consultants involved in software testing; as individual

consultants are replaced, important practical know-how might get lost, in line with

previous research on risks of tacit knowledge [31].

Third, QRs are often not quantified, thus it is difficult to generate appropriate test

data. Vague QRs is a frequently reported issue in RE research [6, 19], and without

quantification QRs are often not verifiable. Looking at the QRs in the QRB and IDs,

performance requirements and sometimes reliability requirements are quantified.

Typically with an exact value, rather than a scale. While some types of QRs do not

need explicit numbers, e.g., usability and maintainability, having explicit quantifica-

tion of QRs help to eliminate subjectivity during testing, in line with observations by

Chung et al. [15]. Indeed, generating test data to verify a software system is a difficult

research topic in itself [2], and in conjunction with vague requirements the challenge

is further intensified. On the other hand, some of the levels that actually are specified

for QRs at GOV are merely early guess estimates that must be updated later, forcing

re-planning of testing.

Fourth, QRs are not prioritized. As a set of QRs typically involves interdependen-

cies [4, 9, 13], understanding quality trade-offs is fundamental. While there are poli-

cies regarding risk assessments at GOV, they are not always followed. Without input

on priorities and risks, test plans become more sensitive to changes as mitigation

plans are more difficult to create.

Fifth, it is hard to generate test data that reflects the various operational states of

the future SoS, as required for e.g. load and performance testing. The QRs expressed

in the IDs put constraints that require the test organization to simulate various states

using stubs and mock objects; different QRs need different operational states to be

verified, and verification of certain QRs might require considerable provocation of the

SoS. Some states are difficult to create in a lab environment, e.g. user interaction that

returns a specific expected result within a given timeframe, simultaneously as real

time data is exchanged over some interfaces with other systems. Another example is

verification of complex business logic that is run concurrently in parallel activities.

The validation of transmitted messages within the SoS requires heavy read and write

to databases, which affects response times of systems retrieving data from the same

databases. Currently, the QRs do not specify which use cases can run in parallel or

what the quality level should be under such constrained conditions, making both de-

sign of test cases and evaluation of test results challenging.

5.3 Discussion and future research

GOV is already addressing the five reported challenges to some extent. One of the

main initiatives is to get different experts and roles to work closer together. Inspired

by integrated RE [36], there is an ongoing discussion on a more iterative approach to

RE. Specifying quantitative targets to QRs before any related source code has been

developed often reveals the inferiority of such an approach, as the QRs typically need

subsequent updates (Ch 1). The literature emphasizes continuous maintenance of

requirements rather than big changes [29], and a constant dialogue between require-

ments engineers and testers [8], which for GOV could turn the QRB and IDs into

“living documents”, i.e., artifacts that continuously evolve.

Transferring knowledge of various operational scenarios at GOV to the develop-

ment project (including the testing activities (Ch 2)) should be facilitated further.

While Bjarnason et al. state the importance of communication between requirements

engineers and testers [8], we highlight that knowledge sharing between system archi-

tects and test managers is equally important at GOV, as the architecture is fundamen-

tal input to testing QRs (cf. Figure 2). The interleaving of RE and architecture, i.e.,

the twin peaks model [11], has attracted much research, but we argue that also the test

perspective should be represented in the twin peaks model (resulting in a “triplet

peak” model) to support the test managers’ system understanding and help specifying

testable QRs. A straightforward step toward alignment of RE, architecture, and testing

perspectives at GOV could be to schedule additional joint meetings and workshops,

especially in the beginning of projects.

One solution proposal from the literature is the QUPER model, an approach to

support setting quality targets [7]. In the QUPER model, quality is modelled as a non-

linear continuum with specific breakpoints for utility, differentiation, and saturation.

By visualizing the quality targets and the different breakpoints, QUPER could stimu-

late discussion and quantification of QRs at GOV (Ch 3). While QUPER was devel-

oped for RE in a market-driven context, the model can still support discussions on

quality targets for products without explicit competitors. Figure 3 illustrates how

QUPER can support setting a target for a response time QR.

Figure 3. Finding a quality target with the QUPER model. Response times > 5 s

represents a useless product, whereas improvements beyond 0.5 s is not recognized by

users. A quality target of 1 s is estimated to impress users.

A common trade-off in software engineering is having complete information

available when you start an activity versus being responsive to a changing environ-

ment. GOV faces the same challenge, as explained in Ch 1: “The RE documents

evolve while testing is planned and ongoing” and Ch 4 “QRs are not prioritized”.

However, not all QRs have an equal impact on the system [10, 16]. Some might be

more fundamental and impact several parts, more significantly changing implementa-

tion and hence also testing. Typically, QRs have a more profound impact than FRs,

but also among the QRs, their impact is different. Chen et al. introduced the concept

of architecturally significant requirements to describe this phenomenon [10]. Howev-

er, the overall problem to identify the significant requirements is not well researched

and it is specifically not clear how to identify the significant QRs [10]. We would like

to further investigate techniques and methodologies to identify “test significant” QRs.

The activity should focus and prioritize the requirements that are the most critical to

fully specify early in the project life-cycle.

Verification of some QRs at GOV requires monitoring various aspects of the SoS

over time. However, interpreting the results of monitoring is still not a simple task.

Performance and load testing of an interface not only require monitoring of both the

producing and consuming sider; As the business flows gets more complex, the num-

ber of interfaces grows, thus monitoring of other applications must also be set up

(related to Ch 5). For example, monitoring of the database server has proven to be

fundamental. Especially in the iterative integration of more systems into the integra-

tion platform, values need to be monitored and regression tests run not once but sev-

eral times as the system changes. Another possibility to verify QRs over time at GOV

could be to implement “virtual plumblines” as suggested by Cleland-Huang et al.

[12]. In the GOV context, this could for example be used to continuously monitor

performance goals as the system is developed; when a certain system quality deterio-

rates, such an alarm system could provide the test leader with early warnings. By

employing practices from integrated RE [36] together with data monitoring tools,

GOV hopes to also see improvements in the area of Ch 1 (changing requirements) and

Ch 2 (business understanding of test managers).

6 Conclusion

This paper reports the first author’s experiences from testing QRs at a large govern-

mental SoS development project in Sweden. We highlight five challenges involved in

testing QRs, and complement the experiences by supporting evidence from an analy-

sis of project documentation. The five main challenges in testing QRs at GOV are: 1)

RE documentation evolves during testing, 2) test managers need extensive under-

standing of the business, 3) QRs are not quantified, 4) QRs are not prioritized, and 5)

simulating all operational states is difficult, challenging testing prior to deployment.

To help GOV tackle these challenges, we match them with solution proposals

from the research literature. Evolving QRs is a well-known challenge in software

engineering, and could be addressed by an integrated RE approach, i.e., plan for RE to

continue throughout the entire development project (Ch 1). Strengthened communica-

tion between the stakeholders from the “twin peaks” (RE and architecture) and the

test managers would support RET knowledge transfer and specification of testable

QRs (Ch 2). Moreover, improved communication among roles, e.g. business, archi-

tects and test managers, could help identifying architecturally significant require-

ments, e.g., to prioritize QRs that have considerable impact on the test planning (Ch

4). The QUPER model could be a tool to stimulate discussion on quality levels and

support quantification (Ch 3). GOV already monitors several quality measures, but

the process could be further inspired by “virtual plumblines” to quickly detect quality

deterioration (Ch 5).

Future work could systematically explore which of the solution proposals GOV

considers most promising to support testing QRs, and also try to implement and eval-

uate the corresponding process improvements.

References
1. Ameller, D., Ayala C., Cabot, J., and Franch, X.. Non-functional Requirements in Archi-

tectural Decision Making. IEEE Software, 30(2), pp. 61-67 (2013).

2. Anand, S., Burke, E., Chen, T., Clark, J., Cohen, M., Grieskamp, W., Harman, M., Har-

rold, M., McMinn, P. An Orchestrated Survey of Methodologies for Automated Software

Test Case Generation, In Journal of Systems and Software, 86(8), pp. 1978-2001, 2013.

3. Axelsson, J. Systems-of-Systems for Border-Crossing Innovation in the Digitized Society -

A Strategic Research and Innovation Agenda for Sweden, SICS Technical Report

T2015:07, 2015.

4. Berntsson Svensson, R. Supporting Release Planning of Quality Requirements: The Quali-

ty Performance Model, PhD Thesis, Lund University, 2011.

5. Berntsson Svensson, R., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt, R.

Quality Requirements in Industrial Practice - An Extended Interview Study at Eleven

Companies, Transactions on Software Engineering, 38(4), pp. 923-935, 2012.

6. Berntsson Svensson, R., Olsson, T., and Regnell, B. An Investigation of how Quality Re-

quirements are Specified in Industrial Practice. Information and Software Technology, 55,

pp. 1224-1236, 2013.

7. Berntsson Svensson, R., and Regnell, B. Aligning Quality Requirements and Test Results

with QUPER’s Roadmap View for Improved High-Level Decision-Making, In Proc. of the

2nd International Workshop on Requirements and Testing, pp. 1-4, 2015.

8. Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M., Engström, E., Regnell, B.,

Sabaliauskaite, G., Loconsole, A., Gorschek, T., and Feldt, R. Challenges and Practices in

Aligning Requirements with Verification and Validation: A Case Study of Six Companies,

Empirical Software Engineering, 19(6), 2014.

9. Borg, A., Yong, A., Carlshamre, P., and Sandahl, K. The Bad Conscience of Requirements

Engineering: An Investigation in Real-World Treatment of Non-Functional Requirements,

In Proc. of the 3rd Conference on Software Engineering and Practice in Sweden, pp. 1-8,

2003.

10. Chen, L., Ali Babar, M., Nuseibeh, B. Characterizing Architecturally Significant Require-

ments. IEEE Software, 30(2), pp. 38-45, 2012.

11. Cleland-Huang, J., Hanmer, R., Supakkul, S., and Mirakhorli, M. The Twin Peaks of Re-

quirements and Architecture, IEEE Software, 30(2), pp. 24-29, 2013.

12. Cleland-Huang, J., Marrero, W., and Berenbach, B. Goal-Centric Traceability: Using Vir-

tual Plumblines to Maintain Critical Systemic Qualities. Transaction on Software Engi-

neering, 34(5), pp. 685-699, 2008.

13. Cleland-Huang, J., Settimi, R., Zou, X., and Sole, P. Automated Classification of Non-

Functional Requirements, Requirements Engineering, 12(2), pp. 103-120, 2007.

14. Chung, L., and do Prado Leite J.C.S., On Non-Functional Requirements in Software Engi-

neering, In Conceptual Modelling: Foundations and Applications, Borgida, A.T.,

Chaudhri, V., Giorgini, P., and Yu, E. (Eds), pp 363-379, 2009.

15. Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. NFR in Software Engineering, Kluwer

Academic Publishers, 2000.

16. Clements, P. and Bass, Len. The Business Goals Viewpoint. IEEE software 27(6), 38-45,

2010.

17. Cysneiros, L., and do Prado Leite J.C.S. Non-Functional Requirements: From Elicitation

to Conceptual Models, Transactions on Software Engineering, 30(5), pp. 328-249, 2004.

18. de la Vara, J., Wnuk, K., Berntsson Svensson, R., Sánchez, J., and Regnell, B. An Empiri-

cal Study on the Importance of Quality Requirements in Industry, In Proc. of the 23rd In-

ternational Conference on Software Engineering and Knowledge Engineering, 2011.

19. Doerr, J., Kerkow, D., Koenig, T., Olsson, T, and Suzuki, T. Non-functional Requirements

in Industry - Three Case Studies Adopting an Experience-based NFR Method. In Proc.

13th International Conference on Requirements Engineering, pp. 373-382. 2005.

20. Dustin, E. Effective Software Testing: 50 Ways to Improve Your Software Testing, Addi-

son-Wesley, 2002.

21. Ebert, C. Putting Requirements Management into Praxis: Dealing with Non-Functional

Requirements, Information and Software Technology, 40(3), pp. 175-185, 1998.

22. Eckhard, J., Méndez Fernández D., and Vogelsang A. How to Specify Non-functional Re-

quirements to Support Seamless Modeling? A Study Design and Preliminary Results, In

Proc. of the 9th International Symposium on Empirical Software Engineering and Meas-

urement, 2015.

23. Ernst, N., and Mylopoulus, J. On the Perception of Software Quality Requirements During

the Project Lifecycle, In the Proc. of the 16th International Working Conference on Re-

quirements Engineering: Foundation for Software Quality, pp. 143-157, 2010.

24. Glinz, M. On Non-Functional Requirements, In Proc. of the 15th International Require-

ments Engineering Conference, pp. 21-26, 2007.

25. Grady, R. Practical Software Metrics for Project Management and Process Improvement.

Prentice Hall, 1992.

26. ISO/IEC 25010:2011, Systems and Software Engineering – Systems and Software Quality

Requirements and Evaluation (SQuaRE), 2011.

27. Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., and Robinson, W. The Brave

New World of Design Requirements, Information Systems, 36(7), pp. 992-1008, 2011.

28. Larsson, J., and Borg, M. Revisiting the Challenges in Aligning RE and V&V: Experienc-

es from the Public Sector, In Proc. of the 1st International Workshop on Requirements and

Testing, pp. 4-11, 2014.

29. Li, J., Zhang, H., Zhu, L., Jeffery, R, and Wang, Q. Preliminary Results of a Systematic

Review on Requirements Evolution, In Proc. of the 16th International Conference on

Evaluation & Assessment in Software Engineering, pp. 12-21, 2012.

30. Méndez Fernández, D, and Penzenstadler, B. Artefact-based Requirements Engineering:

The AMDiRE Approach, Requirements Engineering, 20(4), pp. 405-434, 2015.

31. Ryan, S., and O’Conner, R. Acquiring and Sharing Tacit Knowledge in Software Devel-

opment Teams: An Empirical Study, Information and Software Technology, 55(9), pp.

1614-1624, 2013.

32. Shahrokni, A. and Feldt, R. Towards a Framework for Specifying Software Robustness

Requirements based on Patterns, In Proc. of the 16th International Working Conference on

Requirements Engineering: Foundation for Software Quality, pp. 79-84, 2010.

33. Shahrokni, A. and Feldt, R. RobusTest: A Framework for Automated Testing of Software

Robustness, In Proc. of the 18th Asia-Pacific Software Engineering Conference, pp. 171-

178, 2011.

34. Shahrokni, A., and Feldt, R. Industrial Challenges with Quality Requirements in Safety

Critical Software Systems, In Proc. of the 39th Euromicro Conference Series on Software

Engineering and Advanced Applications, pp. 78-81, 2013.

35. Stapel, K., and Schneider, K. Managing Knowledge on Communication and Information

Flow in Global Software Projects. Expert Systems, doi: 10.1111/j.1468-

0394.2012.00649.x, 2012.

36. Sommerville, I. Integrated Requirements Engineering: A Tutorial. IEEE Software, 22(1),

pp. 16-23, 2005.

http://digital-library.theiet.org/content/conferences/2012/001
http://digital-library.theiet.org/content/conferences/2012/001

