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Abstract. Quality requirements is a difficult concept in software projects, and 

testing software qualities is a well-known challenge. Without proper manage-

ment of quality requirements, there is an increased risk that the software prod-

uct under development will not meet the expectations of its future users. In this 

paper, we share experiences from testing quality requirements when developing 

a large system-of-systems in the public sector in Sweden. We complement the 

experience reporting by analyzing documents from the case under study. As a 

final step, we match the identified challenges with solution proposals from the 

literature. We report five main challenges covering inadequate requirements 

engineering and disconnected test managers. Finally, we match the challenges 

to solutions proposed in the scientific literature, including integrated require-

ments engineering, the twin peaks model, virtual plumblines, the QUPER mod-

el, and architecturally significant requirements. Our experiences are valuable to 

other large development projects struggling with testing of quality require-

ments. Furthermore, the report could be used by as input to process improve-

ment activities in the case under study. 

Keywords: Experience report, quality requirements, software testing, system-

of-systems, document analysis. 

1 Introduction 

The importance of software is ever-growing in our modern society, as more and more 

domains depend on software-intensive systems. In a society increasingly relying on 

software, the quality aspects of the various software systems become critical [5]. Test-

ing Quality Requirements (QR) is known to be difficult in large software engineering 



projects. In a large study on challenges related to alignment of Requirements Engi-

neering and Testing (RET), Bjarnason et al. report that three out of six studied com-

panies struggle with verifying QRs [8]. Several other researchers also acknowledge 

the importance of managing QRs [17, 21], and have called for additional research [4, 

16]. An understanding of software quality should permeate the entire development 

process [27]. Quality aspects, sometimes referred to as “-ilities”, are typically ex-

pressed as QRs (a.k.a. non-functional requirements, in contrast to Functional Re-

quirements (FR)) as part of a project’s Requirements Engineering (RE). Example 

categories of QRs according to ISO/IEC 25010 include reliability, operability, and 

maintainability [26].  

In our previous work on reported general challenges of RET alignment in the pub-

lic sector [28], verifying quality requirements was listed as one of the major challeng-

es. The discussion on QRs was however comparatively short, with the overall conclu-

sion being “many quality aspects cannot be assessed until the system is in operation”. 

We now return to the same project 1.5 years later and report experiences from testing 

QRs of a system that is now partly in operation. Consequently, the current paper con-

stitutes a follow-up of our previous work, i.e., we return to the same development 

project at a governmental agency in Sweden: a major integration effort with the goal 

to establish a System-of-Systems (SoS) for managing EU grants. In this paper, we 

further strengthen the validity of our conclusions by complementing the experiences 

reported by archival analysis of requirements documentation. Finally, our report re-

sponds to a recent national call for more research on SoS in Sweden [3].  

Our main contribution is to report five major challenges in verifying QRs in the 

case under study, namely: 1) changing RE documentation, 2) test managers’ need of 

domain understanding, QRs are neither 3) quantified nor 4) prioritized frequently 

enough, and 5) simulation of complex operational states in a test environment. We 

also propose solutions based on the research literature for the five challenges, includ-

ing improved commination between requirements engineers, architects and test man-

agers (i.e., extending the Cleland-Huang et al.’s “twin peaks” model [11] with the test 

perspective), and early identification of “test significant QRs” (in line with work on 

architecturally significant requirements by Chen et al. [10]). 

The paper is structured as follows: Section 2 introduces previous research on QRs, 

and particularly related work on testing QRs. Section 3 describes the case company 

and the relevant development processes applied in the project under study. Section 4 

presents the research method and the limitations of our work. Section 5 reports our 

results and our corresponding interpretations. Finally, Section 6 concludes our paper 

by summarizing the main takeaways. 

2 Background and related work 

While management of QRs is known to play a crucial role in large software engineer-

ing projects, the RE research community has not agreed on a single definition [14]. In 

this paper, we rely on the definition “QRs describe the non-behavioral aspects of a 

system, capturing the properties and constraints under which a system must operate”. 



The remainder of this section presents key research on QRs, as well as reported chal-

lenges related to both their specification and verification. 

2.1 Quality requirements and quality models 

Several researchers highlight the importance of QRs during software product devel-

opment. Simply implementing all functional requirements is not enough to ensure a 

successful product; Disregarding QRs might lead to a product that is too difficult to 

use or too expensive to maintain [21]. Moreover, poor management of QRs might 

lead to project overruns and increased time-to-market [17]. Berntsson Svensson ar-

gues that QRs are particularly important to market-driven organizations that release 

products to an open consumer market [4]. Although the importance of QRs is general-

ly acknowledged, Chung and do Prado report that RE research is dominated by func-

tional requirements [14], whereas Ameller et al. [1] report that both FR and QR are 

considered equally important by architects. 

Software quality models have been developed to support identification of QRs and 

to help establish control criteria for quality assurance. Two of the most established 

models are ISO/IEC 25010 [26] (the successor of ISO/IEC 9126) and FURPS+ (a 

Hewlett Packard adaptation of the original FURPS model [25]), see Table 1. ISO/IEC 

25010 composes software product quality into eight characteristics: functional suita-

bility, performance efficiency, compatibility, usability, reliability, security, maintain-

ability, and portability. Each characteristic is further divided into sub-characteristics. 

FURPS+ is an acronym representing the quality aspects covered by the model: func-

tionality, usability, reliability, performance, and supportability. The ‘+’ was appended 

to the original FURPS model to highlight additional quality aspects, and constraints 

on the product, e.g., physical requirements or implementation requirements. 

Previous work highlights QRs as among the most challenging aspects to manage 

during software projects. Moreover, Chung et al. report that development organiza-

tions often do not properly acknowledge the significance of QRs [15]. Several re-

searchers try to express the overall challenges of QRs. For example, Glinz claims that 

the mains issues with QRs originate in their definition, classifications, and representa-

tion [24]. Chung et al. instead argues that the three biggest challenges with QR origi-

nates in their nature of being subjective, relative, and interacting [15]. 

A number of studies point out more specific challenges of QRs. Ernst and My-

lopoulus report that software quality aspects are often first considered at late stages of 

the development lifecycle, typically assessed by a set of measures applied to the final 

product [23]. Also Cleland-Huang et al. notice that QRs typically are discovered late 

in software development projects, and often in an ad hoc fashion [13]. Borg et al. 

identified a number of QR challenges in a two-unit case study in Sweden [9]. The 

main finding was again that QRs are discovered late, if they were discovered at all. 

Furthermore, the authors found that the developers in the two cases under study 

struggled with QR specification; QRs are often specified in vague terms that cannot 

be verified. Berntsson Svensson [4] summarizes the main challenges of QRs present-

ed in the literature as: 1) QRs are poorly understood, 2) QRs are stated informally, 3) 

QRs are often contradicting, and 4) QRs are hard to validate. 



 

ISO/IEC 25010  FURPS+ 

Functional 

suitability 

Completeness, Correct-

ness, Appropriateness 

 Func-

tionality 

Capability, Reusability, 

Security 

Perfor-

mance 

efficiency 

Time-behaviour, Re-

source utilization, Ca-

pacity 

 Usability Aesthetics, consistency, 

responsiveness etc.  

Compati-

bility 

Co-existence, Interop-

erability 

 Reliabil-

ity 

Availability, Failure extent, 

Predictability etc. 

Usability Recognizability, 

Learnability, Aesthetics 

etc. 

 Perfor-

mance 

Speed, Efficiency, 

Throughput, Scalability 

etc. 

Reliability Maturity, Availability, 

Fault tolerance, Recov-

erability 

 Support-

ability 

Testability, Flexibility, 

Installability etc. 

Security Confidentiality, Integri-

ty, Accountability etc. 

 + Design, implementation, 

interface, physical re-

quirements  

Maintain-

ability 

Modularity, Reuseabil-

ity, Testability etc. 

   

Portability Adaptability, Installa-

bility, Replaceability 

   

Table 1. Side by side comparison of ISO/IEC 25010 and FURPS+. 

2.2 Verifying quality requirements 

Even in organizations that acknowledge the value of QRs, testing them is often a 

problem. Berntsson Svensson et al. report in an interview study with 11 companies 

that practitioners frequently fail to specify QRs in quantifiable formats that can be 

verified by a testing organization [5]. In an in-depth study of a specific requirements 

specification from one of the companies, Berntsson Svensson et al. find that 56% of 

the QRs are expressed with a quantified quality level [6]. The authors note however, 

that quantification is not suitable for all types of QRs, e.g., security. Shahrokni and 

Feldt address testing of QRs in a safety-critical context (mainly software robustness). 

They analyze three requirements specifications at a case company, and show that the 

fraction of quantified QRs varies between 5% and 45% [34]. Also, they report that the 

number of ambiguous QRs are overrepresented in the set of non-quantified QRs.  

In a multi-unit case study by Bjarnason et al., testing QRs is highlighted as one of 

16 challenges in RET alignment [8]. Some of the reported root causes confirm find-

ings from previous research, including: 1) specification of testable QRs, and 2) sub-

jectively judging whether an QR has passed or not. Our previous paper confirmed that 

testing QRs is a major RET challenge also in the current case [28], primarily since 

most quality aspects cannot be assessed until the full system under development is in 

operation. 



Several researchers have presented approaches to support testing QRs. The 

QUPER model helps development organizations set appropriate quality targets in a 

market-driven context, and Berntsson Svensson and Regnell proposed adding also test 

results to the model to support verification of QRs [7]. Shahrokni and Feldt developed 

the framework ROAST [32] to support elicitation of testable QRs. ROAST supports 

refinement of QRs from high level goals to a set of testable requirements, but the 

framework focuses on robustness requirements and is not applicable to QRs in gen-

eral. Along the same lines, the same Shahrokni and Feldt also presented RobusTest, 

another technical framework supporting automated testing of a system’s robustness 

properties by generating JUnit test cases [33]. Cleland-Huang et al. introduced a con-

cept of “virtual plumblines” to monitor how a system conforms to quality goals 

throughout software evolution [12]. By specifying the plumblines as quality assess-

ment models, carefully distributed in the software system, they could then be reevalu-

ated when a system is changed to verify that quality has not deteriorated. 

3 Case description   

We study a large software project at a governmental agency in Sweden. The first au-

thor has extensive experience as a consultant at the agency, as also reported in our 

publication [28]. In this paper we return to the same case, but particularly focus on 

QRs. In line with the previous publication, we refer to the governmental agency as 

GOV. GOV administrates subsidies from the European Union within a specific area. 

The software development organization within GOV develops a new customized 

platform, offering end-users improved subsidies management using a combination of 

cloud solutions.  

The new platform will combine several existing systems, integrating all steps of 

the application process into a system-of-systems [3], from the individual request to 

the final outgoing payment. The project has the policy to use open source software 

when feasible, utilizing solutions such as Java, JBoss, and PostgreSQL. The runtime 

environment for several parts of the SoS is Red Hat Linux.  

Figure 1 shows an overview of the integration platform under development. In-

stead of having all 12 partaking systems communicate directly with each other (a) in 

Figure 1, an integration platform approach is used (b), which is detailed in (c). Each 

of the 12 systems, as well as each integration between a system and the integration 

platform, are specified in a separate requirements document. 

Two of the most important quality attributes for the new SoS are interoperability 

and performance. The SoS comprises multiple dependencies, and most external inter-

faces will be connected through a common integration platform (cf. b) in Figure 1). 

Reliable integration with services that provide data is essential, thus providing high 

quality APIs is an explicit requirement on the SoS. Also, as the number of future users 

is high, approximately 500 simultaneous users during the peak periods, the network 

performance is critical. Additionally, the data validations can sometimes require ex-

tensive resources, which can affect the performance of the IS, e.g., response times. 

We define two key stakeholders of the SoS. End users are domain experts working 

at either GOV or county administrative boards across Sweden. They have detailed 

knowledge about the application process and assist clients. Clients (i.e., individuals 



and enterprises active in the sector) use the SoS to apply for subsidies. Furthermore, 

we define the business as the organization at GOV that will use the SoS to fulfil their 

operational needs. The IT department of GOV employs business analysts, i.e., re-

quirements engineers responsible for elicitation and specification of the requirements, 

as well as software developers and system architects. 

 

 

 
Figure 1. A principle overview of the integration platform.  

 

Analogous to other governmental agencies in Sweden, new development as well 

as operations at GOV is governed by framework agreements with subcontractors. 

Several subcontractors develop a large fraction of the SoS together, and also perform 

RE and testing activities. The development organization employs approximately 100 

development engineers in total. Development of the new SoS is organized as 12 dif-

ferent projects, reflecting the number of systems to be integrated, employing roughly 

10-20 engineers per project. 

The development process at GOV is based on the Rational Unified Process com-

plemented by agile practices expressed as six goals: 1) End users and the business 

work closely together, 2) High quality through continuous integration and automated 

testing, 3) Incremental development enables frequent acceptance testing, 4) Continu-

ous delivery of system documentation, 5) Development teams are cross-functional 

with integrated competences, and 6) Retrospective meetings at every sprint planning. 

GOV uses the FURPS+ model to elicit and specify QR [25]. 

Planning within the development project at GOV is performed on three different 

levels. Between 6-12 months, strategic planning, which involves resource allocation 

and specification of dates for integration, referred to as milestones. Operational plan-

ning (planning which covers more than 3 sprints). Finally, sprint planning (2 weeks) 

deals with detailed planning of what is to be delivered in the sprint. Further details on 

the development practices at GOV are reported in our previous paper [28]. 

4 Research methodology 

This paper primarily documents experiences from the first author. However, we com-

plement the experiences with an analysis of documents at GOV. 



4.1 Experiences of the First Author 

All experiences reported in this paper belong to the first author, and do not necessarily 

reflect the views of neither Capgemini nor GOV. Larsson is a software engineering 

consultant specializing in testing, especially test processes and test management. He 

has worked in software development projects in the public sector for more than a 

decade in Sweden and Denmark, with extensive experience of public sector develop-

ment of large information systems. Furthermore, he has consulted in RE, mainly re-

quirements elicitation and analysis. Note however that the experiences shared in this 

paper mainly reflect the perspective of a test manager. 

4.2 Document analysis 

The archival analysis of this work is dominated by qualitative analysis. The second 

and third authors independently analyzed project documentation at GOV to find sup-

port for the experiences reported by the first author. The analysis of GOV’s archival 

data, also referred to as content analysis, was conducted on a subset of the available 

project documentation. We studied all available documents describing the develop-

ment process at GOV, and selected one of the twelve systems in the SoS for in-depth 

analysis of all parts and requirements. This is complemented by a light-weight analy-

sis of three additional systems where the requirements are sampled. The emphasis on 

what is in the project documents rather than how they were created is inspired with 

the concept of artifact-based RE as described by Méndez Fernández and Pen-

zenstadler [30]. 

4.3 Threats to validity 

The primary purpose of this paper is to present the first author’s personal experiences. 

Consequently, our paper is subject to the general limitations of experience reports; 

Generalization from our findings is uncertain. While we do not discuss extrapolating 

beyond the case under study, it is relevant to question how general the experiences of 

the first author are among his co-workers. Other engineers at GOV might highlight 

other challenges, and also prioritize them differently. However, we increase the valid-

ity of our findings by independent data source triangulation, i.e., the second and third 

authors performed document analysis to identify supporting evidence in GOV’s pro-

ject documentation. 

5 Results and Discussion 

This section first presents findings from the archival analysis, and then reports the 

first author’s experiences from testing QRs at GOV. 



5.1 QR Information Structure and Information Flow 

The development project under study encompasses an extensive document structure. 

Documents at GOV are hierarchically organized in overall development process 

guidelines and project documentation for the individual systems. The general quality 

of the documents is high, and GOV adheres to good practices such as careful change 

management and consistent templates. All documentation is in Swedish. 

Figure 2 shows an overview of the information flow related to QRs at GOV, from 

RE to the left, to testing at the right side. First, the business analysts create the Quality 

Requirement Baseline (QRB), an overview of the required system qualities, and the 

use cases based on 1) the European Union and Swedish legislation, 2) the overall 

business model at GOV, and 3) various process models describing high-level usage of 

the system under development. The system architects create the system’s architecture 

specification, complemented by a set of Interface Descriptions (IDs) for the relevant 

inter-system collaboration. The output from the business analysts and system archi-

tects is used as input for the software developers (cf. the lower part of the figure, not 

in focus of this study). Apart from the developed software system (cf. the white box), 

the test manager uses the QRB and IDs as direct input for testing QRs. The use cases 

are also relevant; the use cases must be understood to setup a realistic test environ-

ment, i.e., most QRs cannot be tested in isolation, rather the test manager needs to 

establish representative test scenarios in which to verify the QRs.  

 

 
Figure 2. The information flow between RE and testing. Gray documents contain 

QRs. Solid arrows show direct usage, the dashed arrow shows indirect usage. Based 

on Stapel and Schneider’s work on information flow [35]. 

 

As illustrated in Figure 2, two artifact types constitute the key information flow of 

QRs from RE to testing. First, the Quality Requirements Baseline (QRB) is a single 

document that encompasses the overall qualities of the integrated SoS, i.e., the QRB 



is the quality centerpiece from an RE perspective. It is structured according to 

FURPS+, with sections for each corresponding category (see Section 2.1). Examples 

of system qualities specified in the QRB include: 1) acceptable downtime, 2) recover-

ability and startup performance, 3) response times, and 4) the number of simultaneous 

users and actions. Second, the Interface Descriptions (ID) refer to a set of documents 

specifying how the individual systems shall interact within the SoS. Each interface 

description specifies the behavior of both the producing and consuming end, as well 

as the transmitted messages. Examples of QRs for the producers include: 1) size and 

complexity of the messages, and 2) security. Examples of QRs for the consumers 

include: computational performance, e.g., 1) number of messages processed per sec-

ond, and 2) time behavior, e.g., time to validate received data. 

As a majority of GOV’s QRs are specified in the QRB and the IDs, we restrict the 

discussion in the paper to these two artifact types. This focus mirrors the approach 

taken by test managers when planning verification of GOV’s quality goals. There are 

about the same number of FRs as there are QRs in the QRB and IDs (note that the ‘F’ 

in FURPS+ represents “Functionality”). The FRs are typically high-level textual re-

quirements in natural language, e.g. “The system should handle payments of environ-

mental support”. The QRs are written in a similar manner, e.g., “Response time 

should not exceed 1 second when searching and registering information on a particu-

lar issue”. While all FURPS+ categories are represented in the QRB usability and 

implementation/architectural requirements are the biggest (i.e., ‘U’ and ‘+’ in 

FURPS+). The level of QR quantification varies depending on type, as reported also 

in previous work [6]. The reliability and efficiency requirements (i.e., ‘R’ and ‘P’ in 

FURPS+) are often quantified with an explicit target measure, but the other categories 

are expressed in less precise terms. For the IDs, there is a focus on efficiency and 

reliability (i.e., ‘E’ and R in FURPS+). Interestingly, despite specifying interaction 

within a SoS of information systems, the amount of security requirements is low (se-

curity is part of the ‘F’ in FURPS+). 

5.2 Experienced challenges in testing quality requirements 

The QRB, the central quality document, provides an overall structure to work with 

QRs at GOV. The categorization of QRs into FURPS+ helps the test managers to 

identify the key QRs of each category (e.g., usability and reliability) and to plan the 

verification activities accordingly. Still, testing QRs is far from trivial at GOV.  

The IDs, specifying integration within the SoS, are the fundamental artifacts to 

verify QRs related to the data flows. Early specification of data flows enables early 

planning of QR verification, but requires cooperation between the system architects 

and test managers. While some of the IDs reached a stable state early on in the pro-

ject, others are stabilized later in the process. Hence, as the requirements change, the 

test plan must be updated to reflect the changes.  

Typically, the IDs contain a subset of QR from the QRB, but elaborated for the 

specific interface. Not all QR from the QRB are applicable though, e.g., usability (as 

the IDs do not describe any user interfaces). On the other hand, other QRs become 



more important, e.g., efficiency (as the IDs are specifying integration into a SoS, cov-

ering network throughput, response times etc.).  

 

Challenge 1: The RE documents evolve while testing is planned and ongoing. 

Challenge 2: Test managers need to understand the business. 

Challenge 3: QRs are not quantified. 

Challenge 4: QRs are not prioritized. 

Challenge 5: Hard to simulate all operational states. 

Table 2. Main challenges (Ch 1-5) in testing quality requirements at GOV. 

 

Table 2 summarizes our experienced challenges of testing QRs. First, the QRB and 

the ID are repeatedly updated during development, thus the test managers do not 

know when the artifact is stable. As a consequence, early test plans might target the 

wrong quality goals, or miss out on verifying entire quality aspects. This confirms 

previous research, stating that QRs are often discovered late during development [13, 

23]. The challenge involved in awaiting a sufficient set of QRs (i.e., enough require-

ments to enable test planning) also resonates with previous research on dependencies 

among QRs [4]. Furthermore, the documents are not always properly maintained, i.e., 

the artifacts do not necessarily reflect the latest quality targets set by for instance the 

business analysts or the system architect. Inadequate maintenance of requirements 

documents was also reported as a RET challenge by Bjarnason et al. [8].  

Second, to plan the verification, the test managers must have a broad understand-

ing of the business. The QRs can typically not be interpreted in isolation. Rather, the 

test manager must understand the domain and possess insights in the data flow 

through the SoS. This is further complicated by the fact that the QRs are not specified 

in their context. Rather, they are written as part of the QRB or the ID and in a struc-

ture related to the type of requirement rather than their relation to the other require-

ments and parts of the system. Consequently, the testers must identify and understand 

the context themselves. In addition, the importance of domain knowledge to software 

testing is well-known in the literature [20]. At GOV, this challenge is further ampli-

fied by the high proportion of consultants involved in software testing; as individual 

consultants are replaced, important practical know-how might get lost, in line with 

previous research on risks of tacit knowledge [31]. 

Third, QRs are often not quantified, thus it is difficult to generate appropriate test 

data. Vague QRs is a frequently reported issue in RE research [6, 19], and without 

quantification QRs are often not verifiable. Looking at the QRs in the QRB and IDs, 

performance requirements and sometimes reliability requirements are quantified. 

Typically with an exact value, rather than a scale. While some types of QRs do not 

need explicit numbers, e.g., usability and maintainability, having explicit quantifica-

tion of QRs help to eliminate subjectivity during testing, in line with observations by 

Chung et al. [15]. Indeed, generating test data to verify a software system is a difficult 

research topic in itself [2], and in conjunction with vague requirements the challenge 

is further intensified. On the other hand, some of the levels that actually are specified 

for QRs at GOV are merely early guess estimates that must be updated later, forcing 

re-planning of testing. 



Fourth, QRs are not prioritized. As a set of QRs typically involves interdependen-

cies [4, 9, 13], understanding quality trade-offs is fundamental. While there are poli-

cies regarding risk assessments at GOV, they are not always followed. Without input 

on priorities and risks, test plans become more sensitive to changes as mitigation 

plans are more difficult to create. 

Fifth, it is hard to generate test data that reflects the various operational states of 

the future SoS, as required for e.g. load and performance testing. The QRs expressed 

in the IDs put constraints that require the test organization to simulate various states 

using stubs and mock objects; different QRs need different operational states to be 

verified, and verification of certain QRs might require considerable provocation of the 

SoS. Some states are difficult to create in a lab environment, e.g. user interaction that 

returns a specific expected result within a given timeframe, simultaneously as real 

time data is exchanged over some interfaces with other systems. Another example is 

verification of complex business logic that is run concurrently in parallel activities. 

The validation of transmitted messages within the SoS requires heavy read and write 

to databases, which affects response times of systems retrieving data from the same 

databases. Currently, the QRs do not specify which use cases can run in parallel or 

what the quality level should be under such constrained conditions, making both de-

sign of test cases and evaluation of test results challenging.  

5.3 Discussion and future research  

GOV is already addressing the five reported challenges to some extent. One of the 

main initiatives is to get different experts and roles to work closer together. Inspired 

by integrated RE [36], there is an ongoing discussion on a more iterative approach to 

RE. Specifying quantitative targets to QRs before any related source code has been 

developed often reveals the inferiority of such an approach, as the QRs typically need 

subsequent updates (Ch 1). The literature emphasizes continuous maintenance of 

requirements rather than big changes [29], and a constant dialogue between require-

ments engineers and testers [8], which for GOV could turn the QRB and IDs into 

“living documents”, i.e., artifacts that continuously evolve.  

Transferring knowledge of various operational scenarios at GOV to the develop-

ment project (including the testing activities (Ch 2)) should be facilitated further. 

While Bjarnason et al. state the importance of communication between requirements 

engineers and testers [8], we highlight that knowledge sharing between system archi-

tects and test managers is equally important at GOV, as the architecture is fundamen-

tal input to testing QRs (cf. Figure 2). The interleaving of RE and architecture, i.e., 

the twin peaks model [11], has attracted much research, but we argue that also the test 

perspective should be represented in the twin peaks model (resulting in a “triplet 

peak” model) to support the test managers’ system understanding and help specifying 

testable QRs. A straightforward step toward alignment of RE, architecture, and testing 

perspectives at GOV could be to schedule additional joint meetings and workshops, 

especially in the beginning of projects. 

One solution proposal from the literature is the QUPER model, an approach to 

support setting quality targets [7]. In the QUPER model, quality is modelled as a non-



linear continuum with specific breakpoints for utility, differentiation, and saturation. 

By visualizing the quality targets and the different breakpoints, QUPER could stimu-

late discussion and quantification of QRs at GOV (Ch 3). While QUPER was devel-

oped for RE in a market-driven context, the model can still support discussions on 

quality targets for products without explicit competitors. Figure 3 illustrates how 

QUPER can support setting a target for a response time QR. 

 

 
 

Figure 3. Finding a quality target with the QUPER model. Response times > 5 s 

represents a useless product, whereas improvements beyond 0.5 s is not recognized by 

users. A quality target of 1 s is estimated to impress users. 

 

 

A common trade-off in software engineering is having complete information 

available when you start an activity versus being responsive to a changing environ-

ment. GOV faces the same challenge, as explained in Ch 1: “The RE documents 

evolve while testing is planned and ongoing” and Ch 4 “QRs are not prioritized”. 

However, not all QRs have an equal impact on the system [10, 16]. Some might be 

more fundamental and impact several parts, more significantly changing implementa-

tion and hence also testing. Typically, QRs have a more profound impact than FRs, 

but also among the QRs, their impact is different. Chen et al. introduced the concept 

of architecturally significant requirements to describe this phenomenon [10]. Howev-

er, the overall problem to identify the significant requirements is not well researched 

and it is specifically not clear how to identify the significant QRs [10]. We would like 

to further investigate techniques and methodologies to identify “test significant” QRs. 

The activity should focus and prioritize the requirements that are the most critical to 

fully specify early in the project life-cycle. 

Verification of some QRs at GOV requires monitoring various aspects of the SoS 

over time. However, interpreting the results of monitoring is still not a simple task. 

Performance and load testing of an interface not only require monitoring of both the 

producing and consuming sider; As the business flows gets more complex, the num-

ber of interfaces grows, thus monitoring of other applications must also be set up 



(related to Ch 5). For example, monitoring of the database server has proven to be 

fundamental. Especially in the iterative integration of more systems into the integra-

tion platform, values need to be monitored and regression tests run not once but sev-

eral times as the system changes. Another possibility to verify QRs over time at GOV 

could be to implement “virtual plumblines” as suggested by Cleland-Huang et al. 

[12]. In the GOV context, this could for example be used to continuously monitor 

performance goals as the system is developed; when a certain system quality deterio-

rates, such an alarm system could provide the test leader with early warnings. By 

employing practices from integrated RE [36] together with data monitoring tools, 

GOV hopes to also see improvements in the area of Ch 1 (changing requirements) and 

Ch 2 (business understanding of test managers). 

6 Conclusion 

This paper reports the first author’s experiences from testing QRs at a large govern-

mental SoS development project in Sweden. We highlight five challenges involved in 

testing QRs, and complement the experiences by supporting evidence from an analy-

sis of project documentation. The five main challenges in testing QRs at GOV are: 1) 

RE documentation evolves during testing, 2) test managers need extensive under-

standing of the business, 3) QRs are not quantified, 4) QRs are not prioritized, and 5) 

simulating all operational states is difficult, challenging testing prior to deployment.  

To help GOV tackle these challenges, we match them with solution proposals 

from the research literature. Evolving QRs is a well-known challenge in software 

engineering, and could be addressed by an integrated RE approach, i.e., plan for RE to 

continue throughout the entire development project (Ch 1). Strengthened communica-

tion between the stakeholders from the “twin peaks” (RE and architecture) and the 

test managers would support RET knowledge transfer and specification of testable 

QRs (Ch 2). Moreover, improved communication among roles, e.g. business, archi-

tects and test managers, could help identifying architecturally significant require-

ments, e.g., to prioritize QRs that have considerable impact on the test planning (Ch 

4). The QUPER model could be a tool to stimulate discussion on quality levels and 

support quantification (Ch 3). GOV already monitors several quality measures, but 

the process could be further inspired by “virtual plumblines” to quickly detect quality 

deterioration (Ch 5).  

Future work could systematically explore which of the solution proposals GOV 

considers most promising to support testing QRs, and also try to implement and eval-

uate the corresponding process improvements. 
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