

Towards Automatic Constraints Elicitation in Pairwise Testing Based on a Linguistic Approach: Elicitation Support Using Coupling Strength

> <u>Hiroyuki Nakagawa</u>, Tatsuhiro Tsuchiya RET 2015, May 18th, 2015, Firenze, Italy

Background: Pair-wise testing

- Pair-wise testing: Provides small set of test cases
 - Covers every pair of parameter values
- Constraints: define combinations that never happen
 - Determine the test space as well as parameters
- Constraints elicitation is a daunting task [Blue13]
 - Requires Manual capturing and precise definition A test suite for pair-wise testing
 - \rightarrow Try to realize automatic constraints elicitation

OS

Browser

Plugin

based test-suite minimization", in ICSE 2013.

Approach: Measure coupling strength

- Our goal: identify which combinations of parameters contain constraints
 - Assumption: most constraints are caused by strong relationships between parameters
- Define a metric *Coupling strength*: σ(f, g)
 Measures how strong the relationship between parameters is
- Focus on the distance between parameters in document
 - Requirements document is an appropriate document
 - Relative parameters tend to be located near in the document

$\sigma({\rm f,g}) \propto 1/{\rm d}({\rm f,g})$

Distance between parameters
Def.
$$d(f,g) = \frac{\sum_{p \in P^F} \min_{q \in P^G} (|p-q|) + \sum_{q \in P^G} \min_{p \in P^F} (|q-p|)}{|P^F| + |P^G|}$$

- F, G: word groups
 - Members: parameter themselves and their values

Parameter	Values		
OS	Win, Mac, Linux		
Browser	IE, Safari, Chrome		
Plugin	Media, Quick		

•
$$P^{X} (= \langle p^{X}_{1}, p^{X}_{2}, ..., p^{X}_{n} \rangle)$$
:

▶ Positions of word x (\in X) in the document

4

Case study

ATM system example [Bjork]

Parameter	Values		
Transaction	Withdrawal, Deposit, Transfer, Balance inquiry		
Account (A)	Checking, Savings, Money market		
Account (B)	Checking, Savings, Money market, Not selected		
Amount	\$20, \$40, \$60, \$100, \$200, None		
Card	Valid, Invalid, Unreadable		
PIN	Correct, Incorrect, Non-enterable		

Possible constraints

- (a) Transaction = "Balance inquiry" \rightarrow Account (B) = "Not selected"
- (b) Transaction = "Balance inquiry" → Amount = "None"
- (c) Card = "Invalid" || "Unreadable" → PIN = "Non-enterable"

6 [Bjork] R. C. Bjork, "ATM simulation links," http://www.cs.gordon.edu/courses/cs211/ATMExample/

Experimental results

σ (f, g)		g					
		Transaction	Account	Amount	Card	PIN	
f	Transaction	—	0.264	0.275	0.261	0.199	
	Account	0.127	—	0.532	0.208	0.132	
	Amount	0.146	0.586	_	0.143	0.124	
	Card	0.178	0.293	0.183	—	0.346	
	PIN	0.164	0.225	0.193	0.418	—	

 \Rightarrow (c)

Extracted combinations

- ► (A1) Transaction \rightarrow Amount, Account, Card \Rightarrow (a), (b)
- ► (A2) Account \rightarrow Amount
- ► (A3) Amount \rightarrow Account
- ► (A4) Card \rightarrow PIN, Account
- ► (A5) PIN \rightarrow Card

7

Conclusions

- We presented the first step of our approach to supporting constraints elicitation
 - Provides automatic constraint schema extraction
 - Estimates coupling strength from the requirements document
- Preliminary results demonstrate the possibility of our approach

Future work

- Elaboration of the elicitation mechanism
 - Extract concrete constraints
- Other applications of σ (f, g) to the test design
 - E.g.) variable strength interaction testing