
PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public

Using Automated Tests for Communicating and
Verifying Non-functional Requirements

Robert Lagerstedt – Sony Mobile Communications AB



PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public

Architectural Requirements



PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public

Developers focus on other reqts w ‘automatic’ feedback

Developer

Editor Compiler Linker
Continous Integration

Static
Analysis

Automatic
Tests

Deployment Analytics

Feedback

Code

Functional
Requirements Test suites

Non-Functional
Requirements
(Heat, Memory, 
Battery, 
Performance)

Test suites
Memory/

Performance
Analysis

Business
Targets Analytics

Rules



PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public

Wiki

Architectural requirements w ‘manual’ feedback

Developer
(3 000 people)

Editor Compiler Linker
Continous Integration

Static
Analysis

Automatic
Tests

Deployment Analytics

Feedback

Code

Architecture
Requirements
(Code and Design)

Scalability
Maintainability
Portability
Safety
Etc. Architect

(30 people)

Guidelines

Compliance
Report

Write
and
Communicate

Check



PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public

Problem

• Communication is time consuming for the architects.

• Developers forget details from a large number of guidelines.

• Long time passed until developer gets feedback, creates 
task switch and recap.

• Developer are mainly focusing on the latest problem area.

• New developer have a lot to learn before being productive.



PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public

Proposed Solution

Developer

Editor Compiler Linker
Continous Integration

Static
Analysis

Automatic
Tests

Deployment Analytics

Feedback

Code

Architecture
Requirements
(Code and Design)

Scalability
Maintainability
Portability
Safety
Etc.

CheckersCheckersCheckers CheckersCheckers



PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public

Local Environment
Concrete setup

Developer

Editor
• Eclipse

Compile/Link
• Sony M. Build
• Android Build

Static Analysis
• AndroidLint
• FindBugs
• Coverity
• CheckStyle

Code

+1
-1
-2

Continous Integration
• Jenkins

Compile/Link
• Sony M. Build
• Android Build

Static Analysis
• AndroidLint
• FindBugs
• Coverity
• CheckStyle
• Protex
• Proguard

Review 
System
• Git 
• Gerrit

Commit

Reviewers

+2/+1/-1/-2

Feedback

Automatic Tests
• Functional Tests
• NFR Tests
• Code Coverage
• Monkey Tests
• IO Tests

3000+ at 3+ sites

Global Architects

~30
Checkers
• Commit header
• Cherry pick message
• Android public API
• System during release

Checkers
• ACTION_BOOT_COMPLETED
• Include of wrong layer

Checkers
• API backward compat.

Define
and

implement

Wiki

Guidelines
• Naming convention
• Android patching
• Copyright info
• Software update
• etc.

~40



PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public

Conclusion
• My observations shows that with checkers

• Less time is spent on communicating architecture requirements
• Developers learn from their mistakes and have reduced recap time
• New developers have shorter time before being productive

• There are examples of requirements that needs other methods
• Running full Coverity on entire Android platform (Nightly build with mail)
• Running full Protex on entire open source database (Nightly build with mail)
• Too abstract requirements, like ”easy understandable documentation”

• Planned next steps
• Continue to add more guidelines as checkers (Internal and Master Thesis)

• Proposed research steps
• Define criteria's of requirements that are candidates for checkers
• Measure time spent on communications vs. implementation/support for the architects
• Measure time spent on fixing issues when breaking a guideline before and after a checker is implemented.



PA1 Using Automated Tests for Communicating and Verifying Non-functional Requirements2014-07-22 Public


