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Architectural Requirements
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Developers focus on other reqts w ‘automatic’ feedback
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Wiki

Architectural requirements w ‘manual’ feedback
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Problem

• Communication is time consuming for the architects.

• Developers forget details from a large number of guidelines.

• Long time passed until developer gets feedback, creates 
task switch and recap.

• Developer are mainly focusing on the latest problem area.

• New developer have a lot to learn before being productive.
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Proposed Solution
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Local Environment
Concrete setup
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Conclusion
• My observations shows that with checkers

• Less time is spent on communicating architecture requirements
• Developers learn from their mistakes and have reduced recap time
• New developers have shorter time before being productive

• There are examples of requirements that needs other methods
• Running full Coverity on entire Android platform (Nightly build with mail)
• Running full Protex on entire open source database (Nightly build with mail)
• Too abstract requirements, like ”easy understandable documentation”

• Planned next steps
• Continue to add more guidelines as checkers (Internal and Master Thesis)

• Proposed research steps
• Define criteria's of requirements that are candidates for checkers
• Measure time spent on communications vs. implementation/support for the architects
• Measure time spent on fixing issues when breaking a guideline before and after a checker is implemented.
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