
The Observer-Based
Technique for Requirements
Validation in Embedded
Real-Time Systems
Jiale (Joe) Zhou

School of Innovation, Design and Engineering
Mälardalen University, Sweden

zhou.jiale@mdh.se

Outline

●Introduction
●Background
●The Extension of TASM
●Illustration Application
●Conclusion

zhou.jiale@mdh.se

Introduction

●Executable requirements specifications become increasingly attractive
for requirements validation

●Well-defined semantics
●Capture the intended behaviors of the system
●The source of information for validation purpose
●Model checking etc.,

●We are interested in a lightweight requirements validation technique
●Motivate our observer technique presented in previous work

zhou.jiale@mdh.se

Introduction

●Requirements validation is vital
●Anomalies can be traced back to requirements specification
●Increase the confidence that the requirements are correct

●Executable requirements specifications become increasingly attractive
for requirements validation

●Well-defined semantics
●Capture the intended behaviors of the system
●The source of information for validation purpose
●…

●There is a need for an efficient lightweight validation technique
●Motivate our observer technique presented in previous work

zhou.jiale@mdh.se

Introduction

●In our previous work, a formal specification language is extended with the
Event and Observer constructs

●The Timed Abstract State Machine language
●TASM models the behaviors of the system under consideration

●Generate a linear trace of events
●The observers represent the property of interest

●Monitor the event trace
●The regular expression is used to specify the property of interest
●Events have to be available before starting monitoring

●However, the main drawbacks of our previous work are
●The expressiveness power of regular expressions falls short of expressing
unordered fixed-count events

●the occurrence multiplicities are pre-defined but the corresponding order is random
●The monitoring algorithm can not be applied at runtime

zhou.jiale@mdh.se

Introduction

●In this paper, we enhance our observer-based requirements validation
technique

●Propose an observer specification logic
●Events Monitoring Logic
●Originate from the Extended Regular Expressions

●Introduce a rewriting-based monitoring algorithm
●Define how the observers are executed

zhou.jiale@mdh.se

Background

zhou.jiale@mdh.se

●The TASM language
● TASM is a formal language which extends Abstract State Machine

(ASM) with timing and resource consumption annotations
● Understandable and usable without extensive mathematical training

●A TASM specification is a pair <E, ASM> where:
● E is the environment, which defines

● a set of variables,

● type universe,

● environment resources.

● ASM is the abstract state machine, which defines
● a set of machine rules by using the variables with property annotations.

● The rule body is in the form of “if guard then action” or ”else then action”

Background

ENVIRONMENT:
 VARIABLES:
 light_status light := OFF;
 switch_status switch := DOWN;
 USER-DEFINED TYPES:
 light_status := {ON, OFF};
 switch_status := {UP, DOWN};
 RESOURCES:
 power:=[0,10]

●TASM toy example
●light switch

MAIN MACHINE:
 MONITORED VARIABLES:
 switch;
 CONTROLLED VARIABLES:
 light;
 RULES:
 R1: Turn On{
 t:= 1;
 power:=[2,5];
 if light = OFF and switch = UP then
 light := ON; }
 R2: Turn Off {
 t:= [1,2];
 power:=[3,5];
 if light = ON and switch = DOWN then
 light := OFF; }

zhou.jiale@mdh.se

Background

zhou.jiale@mdh.se

●The Extended Regular Expressions (ERE)
● Represent a succinct and useful technique to specify patterns

● inductively utilize the union (+), concatenation (·), repetition (∗) and
complementation (∧) operators

● The observer-based technique is one of the application areas of
interests for ERE

● The monitoring process can be regarded as deciding whether a given
word is in the regular language generated by the expression

The Extension of TASM
●The Fundamental Concepts:

●A TASM Event e is a tuple <E, t, r1, r2, …>
● E defines the type of e in terms of

ResourceUsedUpEvent, ChangeValueEvent,
RuleEnableEVent and RuleDisableEvent

● t records the time stamp

● r1, r2, etc. denote the possible consumed resources by the
corresponding constructs

●An event trace is a finite sequence of events, denoted by
ω = e1e2 ...en.
●An event pattern is an expression following a certain
logic to describe a set of event traces of interests in a
compact and succinct way, denoted by E.

● The set of the event traces of interests (i.e., matching the
event pattern E), are denoted by L(E).

The Extension of TASM
●The Fundamental Concepts:

●A TASM Observer ob is a tuple <OE, L, Obv>
● OE denotes the ObserverEnvironment which consists of

ObserverVariable, TypeUniverse and EventsFilter
● L denotes the Listener which specifies the observer

execution logic in the form of “listening keyword:
condition then action”

● keyword can be either compulsory or optional
● condition specifies an event pattern
● action updates the observer variables

● Obv denotes the Observation which is a predicate
representing the property of interest

The Extension of TASM
●The Events Monitoring Logic (EvML)

● EvML inherits the basic syntax and semantics from
ERE

● The event multi-set expression with a new delimiter
parallel are introduced into EvML, denoted as ||M||

● The EvML syntax

● M denotes the event multi-set expression, which is a
tuple <A, m>

● A denotes the underlying set of events
● m is a function indicating the multiplicity of the

occurrences of the events belonging to A

The Extension of TASM
●The EvML semantics

The Extension of TASM
●The EvML semantics

The Extension of TASM
●The EvML operational semantics

● Event consumption idea
● the EvML expression E can consume an event e in the

trace and produces another EvML expression denoted as
E{e}, with the property that for any trace ω, e · ω∈L(E) if
and only if ω∈L(E{e}).

If E{e1} is not empty

The Extension of TASM
●The EvML operational semantics

● Event consumption idea
● the EvML expression E can consume an event e in the

trace and produces another EvML expression denoted as
E{e}, with the property that for any trace ω, e · ω∈L(E) if
and only if ω∈L(E{e}).

● The value of En decides if the event trace matches the
given expression

● If En is empty, the trace does not match the expression

● If L(En), the trace match the expression

● Otherwise, the trace does not match the expression

The Extension of TASM

If E{e1} is not empty

The Extension of TASM
●The EvML operational semantics

● A set of rewriting rules are defined to implement the
event consumption idea

The Extension of TASM
●The EvML operational semantics

● The ”if then else” structure

● The evaluation of the boolean expression

The Extension of TASM
●The observer execution process enables an observer
working with a given event trace

● Briefly speaking, with the execution of the TASM
model at runtime, different TASM constructs will
generate massive events which can be abstracted as a
linear sequence of events. The observer can spawn one
or more child observers, together to determine the
satisfaction of the upcoming events with the event
pattern and to evaluate corresponding observations.

The Extension of TASM
●The Observer Execution Process

The Extension of TASM
●The Observer Execution Process

Illustration Application

●A simplified Vehicle Locking-Unlocking (VLU) system
● VLU aims at replacing the mechanical key, as a control

access to a vehicle
● The specification follows a common pattern in feature-

oriented requirements specification
● The basic functionality is encapsulated as an individual

feature
● The additional/optional enhancements are specified as

features that provide the increments in functionality

Illustration Application

Illustration Application

●Observer specification
● Assume that we are interested in monitoring the

satisfaction of the AUL feature requirement
● “The system shall lock all the doors of the vehicle when

the vehicle is still and a timeout (timer = 20 in this case)
expires.”

Conclusion

●We have enhanced our observer-based requirements validation technique
●a proposed new observer specification logic (namely EvML)

●Originate from the extended regular expressions
●Specify the situation in which the occurrence number of the events of interests is
predefined and the occurrence order is trivial.

●a newly introduced rewriting-based monitoring algorithm for EvML
●Implement the incremental event consumption idea.

●Our illustration application using a Vehicle Locking-Unlocking system has
shown that EvML is capable to specify observers for validation purpose.
●For future work,

●Have more extensive industrial cooperations for validating our observer-based
technique
●Improve the current implementation of our TASM TOOLSET

zhou.jiale@mdh.se

zhou.jiale@mdh.se

