The Observer-Based
Technique for Requirements

Validation in Embedded
Real-Time Systems

Jiale (Joe) Zhou

zhou jiale@mdh.se

School of Innovation, Design and Engineering
Malardalen University, Sweden

Outline

Introduction
Background

The Extension of TASM
lllustration Application
Conclusion

zhou jiale@mdh.se

Introduction

e Executable requirements specifications become increasingly attractive
for requirements validation

eWell-defined semantics
e Capture the intended behaviors of the system
e The source of information for validation purpose
eModel checking etc.,
oWe are interested in a lightweight requirements validation technique
eMotivate our observer technique presented in previous work

zhou jiale@mdh.se

Introduction

eRequirements validation is vital
eAnomalies can be traced back to requirements specification
e|ncrease the confidence that the requirements are correct

e Executable requirements specifications become increasingly attractive
for requirements validation

e Well-defined semantics

e Capture the intended behaviors of the system

e The source of information for validation purpose

o...
e There is a need for an efficient lightweight validation technique

eMotivate our observer technique presented in previous work

zhou jiale@mdh.se

Introduction

In our previous work, a formal specification language is extended with the
Event and Observer constructs

e The Timed Abstract State Machine language

e TASM models the behaviors of the system under consideration
eGenerate a linear trace of events

e The observers represent the property of interest
eMonitor the event trace
e The regular expression is used to specify the property of interest
eEvents have to be available before starting monitoring

However, the main drawbacks of our previous work are

e The expressiveness power of regular expressions falls short of expressing
unordered fixed-count events

ethe occurrence multiplicities are pre-defined but the corresponding order is random
e The monitoring algorithm can not be applied at runtime

zhou jiale@mdh.se

Introduction

In this paper, we enhance our observer-based requirements validation
technique

ePropose an observer specification logic
eEvents Monitoring Logic
eOriginate from the Extended Regular Expressions
e|ntroduce a rewriting-based monitoring algorithm
eDefine how the observers are executed

zhou jiale@mdh.se

Background

oThe TASM language

e TASM is a formal language which extends Abstract State Machine
(ASM) with timing and resource consumption annotations

e Understandable and usable without extensive mathematical training
oA TASM specification is a pair <E, ASM> where:

e E is the environment, which defines
e a set of variables,
e type universe,
e environment resources.
e ASM is the abstract state machine, which defines
e a set of machine rules by using the variables with property annotations.

e The rule body is in the form of “if guard then action” or “else then action”

zhou jiale@mdh.se

Background

TASM toy example

elight switch
ENVIRONMENT:
VARIABLES: MAIN MACHINE:
light_status light := OFF; MONITORED VARIABLES:
switch_status switch := DOWN; switch;
USER-DEFINED TYPES: CONTROLLED VARIABLES:
light_status := {ON, OFF}; light;
switch_status := {UP, DOWN}; RULES:
RESOURCES: R1: Turn On({
power:=[0,10] t=1;
power:=[2,5];
if light = OFF and switch = UP then
light := ON; }
R2: Turn Off {
t:=[1,2];
power:=[3,5];
if light = ON and switch = DOWN then
light := OFF; }

zhou jiale@mdh.se

Background

The Extended Regular Expressions (ERE)

e Represent a succinct and useful technique to specify patterns

e inductively utilize the union (+), concatenation (-), repetition (*) and
complementation (/\) operators

e The observer-based technique is one of the application areas of
interests for ERE

e The monitoring process can be regarded as deciding whether a given
word is in the regular language generated by the expression

zhou jiale@mdh.se

The Extension of TASM

The Fundamental Concepts:
*ATASM Event eis a tuple <E, t,r,r_, ...>

e E defines the type of e in terms of

ResourceUsedUpEvent, ChangeValueEvent,
RuleEnableEVent and RuleDisableEvent

e t records the time stamp

e r 1, etc. denote the possible consumed resources by the
corresponding constructs

e An event trace is a finite sequence of events, denoted by

W = 6162 ...en.

eAn event pattern is an expression following a certain
logic to describe a set of event traces of interests in a
compact and succinct way, denoted by E.

e The set of the event traces of interests (i.e., matching the
event pattern E), are denoted by L(E).

The Extension of TASM

eThe Fundamental Concepts:
oA TASM Observer ob is a tuple <OE, L, Obv>

e OFE denotes the ObserverEnvironment which consists of
ObserverVariable, TypeUniverse and EventsFilter

e L denotes the Listener which specifies the observer
execution logic in the form of “listening keyword:
condition then action”

e keyword can be either compulsory or optional
e condition specifies an event pattern
e action updates the observer variables

e Obv denotes the Observation which is a predicate
representing the property of interest

The Extension of TASM

The Events Monitoring Logic (EvML)

e EvML inherits the basic syntax and semantics from
ERE

e The event multi-set expression with a new delimiter
parallel are introduced into EvML, denoted as || M||

e The EvML syntax

e M denotes the event multi-set expression, which is a
tuple <A, m>

e A denotes the underlying set of events
e m is a function indicating the multiplicity of the
occurrences of the events belonging to A

The Extension of TASM

eThe EvML semantics

L(0

L(e

L(e
L(E1 + Eo
L(E;

(

L("

)
)
)
)
Es)
)
E)
L(]|M]])

0
1€}
e}

L(E1)UL(Es)
{w1 - walwi € L(F1) and wy € L(E2)}

(L(E))
S\ L(E)

{w|C, = Ay and Ve € w,ny,(e) = mpr(e)}

The Extension of TASM

eThe EvML semantics

Examples:
Assume that >={€,ej,ea,e3}.

) ”» »

"e1 + ez x” denotes {e,”e1”,”ex”,”ezex”,”eseqer” ...}

”(e1 + e2) x” denotes

bb) ” N »?”» » ” N ” b ” bb) bb) bb) bb)
—{€,”e1”,”ex”,”e1e1”,”e1e2”,”eze2”,”eze1”,”e1e1€1” ... }

i ”{61, €2, 63}, {1, 1L 1}”” denotes
= {”eledes”;ejesea"; " eaelles”, caesel’; ' egeneal’'egeaet

” .6177 denOteS {”el” , ” 8161”, »” 6281”, »” 6361”}

” /\61” denotes {77 62” : ” 63” }

The Extension of TASM

The EvML operational semantics

e Event consumption idea

e the EvML expression E can consume an event e in the
trace and produces another EVML expression denoted as
E{e}, with the property that for any trace w, e - w €EL(E) if
and only if w EL(E{e}).

el 62 63 RPN en

E Ele}Ele,} E, ,ie,.,} E, Be,|

It E{e } is not empty

The Extension of TASM

The EvML operational semantics

e Event consumption idea

e the EvML expression E can consume an event e in the
trace and produces another EVML expression denoted as
E{e}, with the property that for any trace w, e - w €EL(E) if
and only if w EL(E{e}).

e The value of E decides if the event trace matches the
given expression

e If E_is empty, the trace does not match the expression
o If /1 L(E), the trace match the expression

e Otherwise, the trace does not match the expression

The Extension of TASM

el 62 63 oo en

E Ele}Ele,} E, e} E, Be,|

It E{e } is not empty

The Extension of TASM

eThe EvML operational semantics

e A set of rewriting rules are defined to implement the
event consumption idea

(E1+ E2){e} — Ei{e}+ Eax{e}
(E1-Ex){e} — (Ei{e}) -Exs+ if (e € L(E1)) then Ex{e} else O fi
(E")le} — (E{e})- £
CE)e} — AE(e})
er{e} — if (eg =e) then eelse () fi
e{le} — 0
0{e} — 0
|M|{e} — if (e € Ay and mps(e) # 0) then mps(e) = m)y(e) else O fi

m’, (e) = n—1 ,mpy(e)=nandn >0
M * ,mpr(e) = x

M| — if (Ve € Am,mum(e) =0 or %)
then € else ||M|| fi 9)

(D)
2)
3)
4)
&)
(6)
(7)
(8)

The Extension of TASM

eThe EvML operational semantics
e The ”if then else” structure

if (true) then Ej else Es fi — E; (10)
if (false) then Ej else Fs fi — Ej (11)

e The evaluation of the boolean expression

e € (L(EL) +L(E3) — e€L(Ey) Vee L(E)(12)
ec (LB -L(E)) — ecL(E)Aee L(Ey)(13)
ec (L(E) — true (14)

ec (L("E)) — mnot (e€ L(E)) (15)
ecL(e) — false (16)

ec L(e) — true (17)

ec L(0) — false (18)

ec L(|M]|) — false (19)

The Extension of TASM

The observer execution process enables an observer
working with a given event trace

e Briefly speaking, with the execution of the TASM
model at runtime, different TASM constructs will
generate massive events which can be abstracted as a
linear sequence of events. The observer can spawn one
or more child observers, together to determine the
satisfaction of the upcoming events with the event
pattern and to evaluate corresponding observations.

The Extension of TASM

eThe Observer Execution Process

(T he observer starts)
working

Wait for an available
é f
event
No Is the event
v, .
relevant? Spawn a child observer
Yes
Consume the event and No
rewrite its expression :
P [s the expression Yes

empty set?

No

Can the new expression match g

Execute the
Listener’s actions

v

Conclude the
Observation

Is the predicate of the N
observation true?
The observer Property
is satisfied Violated

The Extension of TASM

eThe Observer Execution Process
(The child observer>
1s spawned
v

Wait for a relevant event [€

v

Consume the event and
rewrite the expression

Can the new expression match & ?

Is the expression N
?
Execute the empty set’

Listener’s actions

v

Conclude the

[s the Listener’s keyword

Observation ‘
compulsory?
. = N Yes
Is the predicate of the 0
observation true?
Yes ‘

The child observer Property The child observer
1s satisfied Violated is destroyed

lllustration Application

A simplified Vehicle Locking-Unlocking (VLU) system

e VLU aims at replacing the mechanical key, as a control
access to a vehicle

e The specification follows a common pattern in feature-
oriented requirements specification

e The basic functionality is encapsulated as an individual
feature

e The additional/optional enhancements are specified as
features that provide the increments in functionality

lllustration Application

Vehicle Locking-

Unlocking

Central Locking

Auto-lockout

Anti-lockout

lllustration Application

eObserver specification

0 o b W NP

H BB
N B O W

s
14
1LL5)
16
17
18
19
20
21

e Assume that we are interested in monitoring the
satisfaction of the AUL feature requirement

e “The system shall lock all the doors of the vehicle when
the vehicle is still and a timeout (timer = 20 in this case)
expires.”

ObserverVariables: {

}

Time obtl := 0; Time obt2:=0;

EventsFilter: {

}

irrelevant event types: ReUUE, ChVE, RubDE;

Listener: {

}

listening optional:
[| { AU L—>Timer— RuFEFE, NAUL—>Timer Reset—RuEFE}, {20, *} ||

DOOR—Lock— RuFEFFE then
obtl:=AUL—>Timer— RuFF (1) —>t; %the stamped time of the
first event of the

AUL—>Timer— RuFEFE type

ocbt2:=DOOR—Lock—RuFEFE—t;

Observation: {

}

obt2—obtl == 20+ DOOR—>Lock—locking_time;

Conclusion

We have enhanced our observer-based requirements validation technique
ea proposed new observer specification logic (namely EVML)

eOriginate from the extended regular expressions

e Specify the situation in which the occurrence number of the events of interests is
predefined and the occurrence order is trivial.

ea newly introduced rewriting-based monitoring algorithm for EVML

eImplement the incremental event consumption idea.

Our illustration application using a Vehicle Locking-Unlocking system has
shown that EVML is capable to specify observers for validation purpose.

For future work,

eHave more extensive industrial cooperations for validating our observer-based
technique

eImprove the current implementation of our TASM TOOLSET

zhou jiale@mdh.se

Thank You
Tack ¢

zhou jiale@mdh.se

